首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Azurin, a blue copper protein from Pseudomonas aeruginosa, and several derivatives of azurin have been studied by differential scanning calorimetry. Two well-separated, irreversible transitions are observed in a scan of apoazurin under a variety of conditions, and they are assigned to distinct steps in the denaturation process. No specific structural component can be assigned to the lower temperature transition, but a "flap" structure which is found near the metal binding site may be involved. Circular dichroic spectra suggest that melting of the beta-sheet structure, the main structural motif in the native protein, occurs during the second transition. With the exceptions of the Ni(II) and p-(hydroxymercuri)benzoate derivatives, the transitions are superposed in the metalated forms, and the enthalpies of denaturation are more endothermic. By comparison with other first-row divalent transition ions and especially Zn(II), the Cu(II) derivative exhibits the most endothermic denaturation process. Along with other data, this suggests that the binding energy is greater for Cu(II). It is postulated that the selectivity for copper over zinc arises because of the irregular binding geometry offered by the folded protein. Denaturation of the Hg(II) derivative is even more endothermic, confirming that the type 1 binding site has a very great affinity for Hg(II). Finally, when substoichiometric amounts of Hg(II) are added to the apoprotein, there is evidence that a novel mercury-bridged dimer of azurin forms.  相似文献   

2.
The effect of copper/zinc metal ion replacement on the folding free energy of wild type (w.t.) and disulfide bridge depleted (C3A/C26A) azurin has been investigated by differential scanning calorimetry (DSC) and fluorescence techniques. The denaturation experiments have shown that, in both cases, the thermal transitions of the zinc derivative of azurins can be depicted in terms of the classical Lumry–Eyring model, NUF, thus resembling the unfolding path of the two copper proteins. The thermally induced transition of Zn azurin, monitored by fluorescence occurs at lower temperature than the DSC scans indicating that a local conformational rearrangement of the Trp microenvironment, takes place before protein denaturation. For Zn C3A/C26A azurin, the two techniques reveal the same transition temperature. Comparison of the thermodynamic data shows that the presence of Zn in the active site stabilises the three-dimensional structure of azurin only when the disulfide bridge is present. Compared to the copper form of the protein, the unfolding temperature of Zn azurin has increased by 4 °C, while the unfolding free energy, ΔG, is 31 kJ/mol higher. Both enthalpic and entropic factors contribute to the observed ΔG increase. However, the copper/zinc replacement has no effect on the unfolding free energy of C3A/C26A azurin. Taking Cu azurin w.t. as the reference state, for both Cu and Zn C3A/C26A azurin the unfolding free energy is decreased by about 28 kJ/mol, indicating that metal substitution is not able to compensate the destabilising effect induced by the disulfide bridge depletion. It is noteworthy that the thermal denaturation of the Zn derivative, which thermodynamically is the most stable form of azurin, is also characterized by the highest value of the activation energy, Ea, as derived from the kinetic stability analysis.  相似文献   

3.
Azurin, a small blue copper protein from the bacterial species Pseudomonas aeruginosa, is mostly a β-sheet protein arranged into a single domain. Previous folding studies have shown that the equilibrium denaturation of the holoprotein follows a two-state process; however, upon removal of the copper, the denaturation had been reported to follow a three-state process. The two unfolding transitions measured for apoazurin had been thought to arise from two different folding domains. However, in the present work, we found that the denaturation of apoazurin occurs over a single transition and we determined the folding free energy to be −27.8±2.4 kJ mol−1. From this measurement along with measurements previously reported for the unfolding of the holoazurin, we were able to determine that Cu(II) and Cu(I) stabilize the native structure by 25.1±6.9 kJ/mol and 12.9±8.1 kJ/mol, respectively. It is our contention that the second transition displayed in the denaturation curves previously reported for apoazurin arise from protein heterogeneity—in particular, from the presence of Zn(II) azurin. We extended our investigation into the denaturation of Zn(II) azurin at pH 6.0 and 7.5. The equilibrium denaturation studies show that the zinc ion significantly stabilizes the native-state structure at pH 7.5 and very little at the lower pH. We attribute the decrease in the stabilizing effect of the zinc ion with decreasing pH to the protonation of two histidinyl side chains. When protonated the ligands, His 46 and His 117, are incapable of binding a metal ion. Further, comparing the denaturation curves of Zn(II) azurin measured by circular dichroism with those measured by fluorescence indicates that the denaturation of Zn(II) azurin is far less simple than the denaturation of apoazurin.  相似文献   

4.
Pseudomonas aeruginosa azurin binds copper so tightly that it remains bound even upon polypeptide unfolding. Copper can be substituted with zinc without change in protein structure, and also in this complex the metal remains bound upon protein unfolding. Previous work has shown that native-state copper ligands Cys112 and His117 are two of at least three metal ligands in the unfolded state. In this study we use isothermal titration calorimetry and spectroscopic methods to test if the native-state ligand Met121 remains a metal ligand upon unfolding. From studies on a point-mutated version of azurin (Met121Ala) and a set of model peptides spanning the copper-binding C-terminal part (including Cys112, His117 and Met121), we conclude that Met121 is a metal ligand in unfolded copper-azurin but not in the case of unfolded zinc-azurin. Combination of unfolding and metal-titration data allow for determination of copper (Cu(II) and Cu(I)) and zinc affinities for folded and unfolded azurin polypeptides, respectively.  相似文献   

5.
The interaction between azurin from Pseudomonas aeruginosa and Ag(I), Cu(II), Hg(II), was investigated as a function of protein state, i.e. apo-, reduced and oxidised azurin. Two different metal binding sites, characterized by two different spectroscopic absorbancies, were detected: one is accessible to Ag(I) and Cu(II) but not to Hg(II); the other one binds Ag(I) and Hg(II) but not copper. When added in stoichiometric amount, Ag(I) shows high affinity for the redox center of apo-azurin, to which it probably binds by the -SH group of Cys112; it can displace Cu(I) from reducedazurin, while it does not bind to the redox center of oxidizedazurin. Kinetic experiments show that Ag(I) binding to the reduced form is four times faster than binding to the apo-form. This result suggests that metal binding requires a conformational rearrangement of the active site of the azurin. Interaction of Ag(I) or Hg(II) ions to the second metal binding site, induces typical changes of UV spectrum and quenching of fluorescence emission.  相似文献   

6.
Amyloid beta (Abeta) is a central characteristic of Alzheimer's disease (AD). Currently, there is a long-standing dispute regarding the role of Abeta-metal ion (Zn, Cu, and Fe) complexes in AD pathogenesis. Here, we aim to decipher the connection between oxidative damage implicated in AD and Abeta-metal ion complexes. For this purpose we study, using ESR, the modulation of Cu/Fe-induced H 2O 2 decomposition by Abeta 1-28 (Abeta 28), a soluble model of Abeta 40/42. The addition of H 2O 2 to 0.6 nM-360 microM Abeta 28 solutions containing 100 microM Cu(II)/Cu(I)/Fe(II) at pH 6.6 results in a concentration-dependent sigmoidal decay of [*OH] with IC 50 values of 61, 59, and 84 microM, respectively. Furthermore, Abeta 28 reduces 90% of *OH production rate in the Cu(I)-H 2O 2 system in 5 min. Unlike soluble Abeta 28, Abeta 28-Cu aggregates exhibit poor antioxidant activity. The mode of antioxidant activity of soluble Abeta 28 is twofold. The primary (rapid) mechanism involves metal chelation, whereas the secondary (slow) mechanism involves (*)OH scavenging and oxidation of Cu(Fe)-coordinating ligands. On the basis of our findings, we propose that soluble Abeta may play a protective role in the early stages of AD, but not in healthy individuals, where Abeta's concentration is nanomolar. Yet, when Abeta-metal ion complexes undergo aggregation, they significantly lose their protective function and allow oxidative damage to occur.  相似文献   

7.
Photophysics of metalloazurins   总被引:1,自引:0,他引:1  
The fluorescence lifetimes of Cu(II), Cu(I), Ag(I), Hg(II), Co(II), and Ni(II) azurin Pae from Pseudomonas aeruginosa and Cu(II), Cu(I), and Hg(II) azurin Afe from Alcaligenes faecalis were measured at 295 K by time-correlated single-photon counting. In addition, fluorescence lifetimes of Cu(II) azurin Pae were measured between 30 and 160 K and showed little change in value. Ultraviolet absorption difference spectra between metalloazurin Pae and apoazurin Pae were measured, as were the fluorescence spectra of metalloazurins. These spectra were used to determine the spectral overlap integral required for dipole-dipole resonance calculations. All metalloazurins exhibit a reduced fluorescence lifetime compared to their respective apoazurins. Forster electronic energy transfer rates were calculated for both metalloazurin Pae and metalloazurin Afe derivatives; both enzymes contain a single tryptophyl residue which is located in a different position in the two azurins. These azurins have markedly different fluorescence spectra, and electronic energy transfers occur from these two tryptophyl sites with different distances and orientations and spectral overlap integral values. Intramolecular distances and orientations were derived from an X-ray crystallographic structure and a molecular dynamic simulation of the homologous azurin Ade from Alcaligenes denitrificans, which contains both tryptophyl sites. Assignments were made of metal-ligand-field electronic transitions and of transition dipole moments and directions for tryptophyl residues, which accounted for the observed fluorescence quenching of Hg(II), Co(II), and Ni(II) azurin Pae and Cu(II) and Hg(II) azurin Afe. The fluorescence of azurin Pae is assigned as a 1Lb electronic transition, while that of azurin Afe is 1La. The marked fluorescence quenching of Cu(II) azurin Pae and Cu(I) azurin Pae and Afe is less well reproduced by our calculations, and long-range oxidative and reductive electron transfer, respectively, are proposed as additional quenching mechanisms. This study illustrates the application of Forster electronic energy transfer calculations to intramolecular transfers in structurally well characterized molecular systems and demonstrates its ability to predict observed fluorescence quenching rates when the necessary extensive structural, electronic transition assignment, and spectroscopic data are available. The agreement between Forster calculations and quenching rates derived from fluorescence lifetime measurements suggests there are limited changes in conformation between crystal structure and solution structures, with the exception of the tryptophyl residue of azurin Afe, where a conformation derived from a molecular simulation in water was necessary rather than that found in the crystal structure.  相似文献   

8.
Interactions between hexacyanoiron(II/III) and a dinuclear, mixed valence Cu(A) center in engineered Cu(A) azurin have been investigated by UV-visible (UV-vis) and electron paramagnetic resonance (EPR) spectroscopic techniques. Addition of ferricyanide (hexacyanoiron(III)) to the Cu(A) azurin resulted in a new absorption band around 500 nm in the UV-vis and an isotropic line at g = 2.16 in the EPR spectra. Control experiments, including additions of Cu(II)SO(4) or Cu(I)(CH(3)CN)(4)PF(6) to ferricyanide or ferrocyanide, as well as gel filtration purification of the ferricyanide-Cu(A) azurin adduct indicate complex formation between cupric ion and ferrocyanide ion in the protein. Solvent or small molecule accessibility, metal oxidation state and the presence of more than one metal ion are potential factors important for the complex formation. These findings must be taken into consideration when using ferricyanide or ferrocyanide as redox agents for studying Cu(A) centers in proteins.  相似文献   

9.
To facilitate the application of anaerobic ammonium oxidation (anammox) to a nitrogen removal process, the effects of heavy metals (Ni, Cu, Co, Zn, and Mo) on anammox bacteria entrapped in gel carriers were examined by conducting continuous feeding tests for each metal. The results show that all anammox activities decreased by more than 10 % when influent concentrations of Ni, Cu, Co, Zn, and Mo were 5, 5, 5, 10, and 0.2 mg/L, respectively. It was observed that the effects of Ni, Cu, Co, and Zn on anammox activity were reversible and that of Mo on anammox activity was irreversible. Anammox activity was not affected when influent containing mixed Ni, Cu, Co, and Zn (0.5 mg/L) was fed into the reactor.  相似文献   

10.
Sakurai T 《FEBS letters》2006,580(7):1729-1732
Autoreduction of Cucumis sativus plastocyanin and Pseudomonas aeruginosa azurin took place at alkaline pHs, having been accompanied by the decrease in the intensities of the charge transfer band, Cys-S- (pi)-->Cu(II) at 597 and 626 nm, and the Cu(II)-EPR signals with small AII values of 6.5 x 10(-3) and 5.3 x 10(-3) cm(-1) for plastocyanin and azurin, respectively. Further, an extra Cu(II)-EPR signal with a large AII value of 21 x 10(-3) cm(-1) also reversibly emerged with increasing pH. Plastocyanin and azurin are in an equilibrium of the three forms at alkaline pHs.  相似文献   

11.
Laser flash-quench methods have been used to generate tyrosine and tryptophan radicals in structurally characterized rhenium-modified Pseudomonas aeruginosa azurins. Cu(I) to "Re(II)" electron tunneling in Re(H107) azurin occurs in the microsecond range. This reaction is much faster than that studied previously for Cu(I) to Ru(III) tunneling in Ru(H107) azurin, suggesting that a multistep ("hopping") mechanism might be involved. Although a Y108 radical can be generated by flash-quenching a Re(H107)M(II) (M=Cu, Zn) protein, the evidence suggests that it is not an active intermediate in the enhanced Cu(I) oxidation. Rather, the likely explanation is rapid conversion of Re(II)(H107) to deprotonated Re(I)(H107 radical), followed by electron tunneling from Cu(I) to the hole in the imidazole ligand.  相似文献   

12.
Assignments of resonances in the 1H nmr spectra of Cu(I) azurin to proton groups in the protein are discussed in detail. Comparisons are drawn between Cu(I), Cu(II), apo, Hg(II), and Co(II) azurin samples. Redox titration of Cu(I) azurin with K3Fe(CN)6, is used to correlate Cu(I) and Cu(II) 1H nmr spectral features, and observed line broadenings deriving from Cu(II) paramagnetic effects are used to deduce the distances of assigned proton groups from the copper center. Histidine residues are characterized in terms of pK values, rates of acid-base exchange near the the pK, and rates of C2H exchange with solvent deuterium. The possibility of histidine involvement in the azurincytochrome 551 electron exchange mechanism is discussed. A small number of NH protons observed to be distinctively inert to 2H exchange with solvent 2H2O, in the Cu(I) protein, are found to show increased lability on removal of the metal.  相似文献   

13.
Pseudomonas aeruginosa azurin is a blue-copper protein with a beta-barrel fold. Here we report that, at conditions where thermal unfolding of apo-azurin is reversible, the reaction occurs in a single step with a transition midpoint (T(m)) of 69 degrees C (pH 7). The active-site mutation His117Gly creates a cavity in the beta-barrel near the surface but does not perturb the overall fold (T(m) of 64 degrees C, pH 7). Oxidation of the active-site cysteine (Cysteine-112) in wild-type azurin, which occurs readily at higher temperatures, results in a modified protein that cannot adopt a native-like structure. In sharp contrast, Cysteine-112 oxidation in His117Gly azurin yields a modified apo-azurin that appears folded and displays cooperative, reversible unfolding (T(m) approximately 55 degrees C, pH 7). We conclude that azurin's beta-barrel is a rigid structural element that constrains the structure of its surface; a bulky modification can only be accommodated if complementary space is provided.  相似文献   

14.
The potential use of the immobilized fresh water algae (in Ca-alginate) of Scenedesmus quadricauda to remove Cu(II), Zn(II) and Ni(II) ions from aqueous solutions was evaluated using Ca-alginate beads as a control system. Ca-alginate beads containing immobilized algae were incubated for the uniform growth at 22 degrees C for 5d ays. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae showed highest values at around pH 5.0. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae increased as the initial concentration of metal ions increased in the medium. The maximum adsorption capacities of the immobilized algal biosorbents for Cu(II), Zn(II) and Ni(II) were 75.6, 55.2 and 30.4 mg/g (or 1.155, 0.933 and 0.465 mmol/g) biosorbent, respectively. When the heavy metal ions were in competition, the amounts of adsorbed metal ions were found to be 0.84 mol/g for Cu(II), 0.59 mol/g for Ni(II) and 0.08 mol/g for Zn(II), the immobilised algal biomass was significantly selective for Cu(II) ions. The adsorption-equilibrium was also represented with Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. The adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae followed second-order kinetic.  相似文献   

15.
The technique of differential pulse polarography is shown here to be applicable to the monitoring directly the biosorption of metal ions from solution by live bacteria from mixed metal solutions. Biosorption of Cd(II), Zn(II) and Ni(II) by P. cepacia was followed using data obtained at the potential which is characteristic of the metal ion in the absence and presence of cells. Hepes buffer (pH 7.4, 50 mM) was used as a supporting electrolyte in the polarographic chamber and metal ion peaks in the presence of cells of lower amplitude were obtained due to metal-binding by the cells. Well defined polarographic peaks were obtained in experiments involving mixtures of metal ions of Cd(II)-Zn(II), Cu(II)-Zn(II), Cu(II)-Cd(II) and Cd(II)-Ni(II). Biosorption of Cd(II), Zn(II) increased with solution pH. The method was also tested as a rapid technique for assessing removal of metal ions by live bacteria and the ability of the polarographic technique in measuring biosorption of metal ions from mixed metal solutions is demonstrated. Cu(II) was preferentially bound and removal of metals was in the order Cu(II) > Ni(II) > Zn(II), Cd(II) by intact cells of P. cepacia. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
This paper reports biosorption of Zn(II), Cu(II) and Co(II) onto O. angustissima biomass from single, binary and ternary metal solutions, as a function of pH and metal concentrations via Central Composite Design generated by statistical software package Design Expert 6.0. The experimental design revealed that metal interactions could be best studied at lower pH range i.e. 4.0-5.0, which facilitates adequate availability of all the metal ions. The sorption capacities for single metal decreased in the order Zn(II)>Co(II)>Cu(II). In absence of any interfering metals, at pH 4.0 and an initial metal concentration of 0.5 mM in the solution, the adsorption capacities were 0.33 mmol/g Zn(II), 0.26 mmol/g Co(II) and 0.12 mmol/g Cu(II). In a binary system, copper inhibited both Zn(II) and Co(II) sorption but the extent of inhibition of former was greater than the latter; sorption values being 0.14 mmol/g Zn(II) and 0.27 mmol/g Co(II) at initial Zn(II) and Co(II) concentration of 1.5 mM each, pH 4.0 and 1mM Cu(II) as the interfering metal. Zn(II) and Co(II) were equally antagonistic to each others sorption; Zn(II) and Co(II) sorption being 0.23 and 0.24 mmol/g, respectively, at initial metal concentration of 1.5 mM each, pH 4.0 and 1mM interfering metal concentration. In contrast, Cu(II) sorption remained almost unaffected at lower concentrations of the competing metals. Thus, in binary system inhibition dominance observed was Cu(II)>Zn(II), Cu(II)>Co(II) and Zn(II) approximately Co(II), due to this the biosorbent exhibited net preference/affinity for Cu(II) sorption over Zn(II) or Co(II). Hence, the affinity series showed a trend of Cu(II)>Co(II)>Zn(II). In a ternary system, increasing Co(II) concentration exhibited protection against the inhibitory effect of Cu(II) on Zn(II) sorption. On the other hand, the inhibitory effect of Zn(II) and Cu(II) on Co(II) sorption was additive. The model equation for metal interactions was found to be valid within the design space.  相似文献   

17.
The thermal denaturation profile of the Cu2+, Zn2+ metalloenzyme, bovine superoxide dismutase, consists of two primary components, the major component denatures irreversibly at Tm = 104 degrees C with a total enthalpy (delta Hcal) of 7.30 cal/g. Reduction of Cu(II) to Cu(I) with potassium ferrocyanide lowers Tm to 96 degrees C and delta Hcal to 6.96 cal/g. The apo-form of bovine superoxide dismutase (both Cu and Zn removed) denatures at 60 degrees C with an enthalpy only one-half that of the holo-form. The reduced thermal stability, which indicates a greater ability to change conformation, may explain the previously observed much greater membrane binding of the apo-enzyme. Reconstitution with Zn2+, Cu2+, or Zn2+ and Cu2+ raises Tm to 80, 89, or 102 degrees C, respectively, with corresponding increases in the enthalpy. Thus, the metal ions considerably stabilize the enzyme and must somewhat affect conformation. The effect of Cu2+ alone is greater than that of Zn2+, although both are needed for full stability. Raman spectroscopy indicates little difference in secondary structure between the apo- and holo-forms, implying that the increased stability due to metal binding is not caused by an extreme structural reorganization. The value of Tm of canine and yeast superoxide dismutase is also lowered by reduction of Cu(II). The reduced form of the yeast enzyme denatures irreversibly, as do all forms of the bovine and canine enzymes, but the oxidized form is unique in that it denatures reversibly. Thus, the copper ion must be oxidized for renaturation and appears to act as a nucleation site.  相似文献   

18.
The oncogenic E7 proteins of human papilloma virus (HPV 16) and of cottontail rabbit papilloma virus (CRPV) have been purified from an expression system in Escherichia coli. The proteins as purified from E. coli contain one tightly bound Zn(II) ion per molecule. The metal site shows facile exchange with either Cd(II) or Cu(I). The HPV 16 E7 maximally bound one Cd(II) or two Cu(I) ions, while the CRPV E7 bound two Cd(II) or three Cu(I) ions. The Cd(II) and Cu(I) E7 molecules exhibited optical transitions in the ultraviolet suggestive of metal:thiolate coordination. E7 proteins from HPV 16 and CRPV contain 7 and 8 cysteines/molecule, respectively. Reaction of the E7 proteins with the sulfhydryl reagent, dithiodipyridine, revealed that all the cysteinyl sulfurs are present in the reduced thiol state. Cu(I)-E7 molecules are luminescent with maximal emission at 570 nm. The observed emission at room temperature is indicative of metal coordination within a compact protein environment shielded from solvent interactions. The emission maxima occurs at the same wavelength (570 nm) as Cu(I)-cysteinyl sulfur clusters in Cu(I)-metallothioneins. The single Zn(II) atom in each protein can be removed from E7 in the presence of EDTA. The resulting apoE7 molecules remain soluble and can be partially reconstituted with Cd(II) to regain the ultraviolet charge transfer transitions.  相似文献   

19.
A CUA center engineered into Pseudomonas aeruginosa azurin was studied by metal substitution. Metal-binding properties were determined by electronic absorption (UV-vis) and electrospray ionization mass spectrometry (ESI-MS). The metal-binding site readily binds thiophilic metal ions, such as Hg(II), Ag(I), Cu(I), Cd(II), and Au(I). Harder metal ions, like Co(II), bind to apo-CuA-azurin only under basic conditions (pH 9.1-9.2). The results obtained from these studies indicate that two factors influence metal binding in CuA azurin: (1) the site favors metal combinations which produce an overall +3 charge, and (2) the site binds soft, thiophilic metal ions. The results demonstrate the remarkable ability of the CuA center to maintain valence delocalization of its native metal ions and to ensure redox accessibility of only one of the two redox couples (i.e., [Cu(1.5)...Cu(1.5)]<==> [Cu(I)...Cu(I)]) under physiological conditions. These findings may lead to the preparation of new metal ion derivatives and can serve as a basis for understanding this efficient electron transfer center.  相似文献   

20.
Resonance Raman spectra are reported for native Cu(II) Pseudomonasaeruginosa azurin and its Ni(II) substituted derivative. The spectrum of the native azurin includes a low frequency feature and bands in the first overtone region not previously reported. The spectrum of the Ni(II) derivative exhibits three major peaks in the metal-ligand stretching region shifted to lower frequency relative to the M-L peaks in the spectrum of native azurin. Resonance enhanced ligand modes are observed which indicate that at least two of the ligands in Ni(II) azurin (cysteine and at least one histidine) are the same as in native azurin. The data also suggest that the disposition of ligands about the metal may be more nearly tetrahedral in the Ni(II) derivative than in native azurin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号