首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: How growth of wild and crop species responds to global environmentalperturbations has both ecological and agricultural significancein a changing world. The primary aim of this synthesis was toquantitatively assess the interactive effects of intraspecificcompetition and elevated CO2 on biomass production in herbaceousspecies. Methods: Using meta-analytical techniques, we synthesized data from publicationsbefore 2006 that reported biomass responses to elevated CO2in 321 herbaceous species grown in isolation or in competitionwith con-specific individuals. Important findings: Intraspecific competition differentially modified biomass responsesto elevated CO2 in wild and crop species. For example, competitionreduced CO2 stimulation of total biomass (WT) from 27 to 23%in wild species, but by a much greater magnitude, i.e., from43 to 32% in crops. Competition had no effect on responses ofeither above- (WAG) or below-ground (WBG) biomass to elevatedCO2 in wild species, but significantly diminished CO2 enhancementof WAG, although not of WBG, in crops. Considerable variationswere found among functional groups in the modification of growthresponses to elevated CO2 by intraspecific competition, whichexerted greater depression on CO2 enhancement in C3 than inC4 species and in non-legumes than in legumes. Elevated CO2affected leaf and stem growth of individually grown C3 graminoidsand forbs similarly, but increased leaf growth only in C4 graminoidsand stem growth only in C4 forbs. Results from this synthesisdemonstrated that intraspecific competition differentially affectedgrowth responses to elevated CO2 in wild and crop species. Thewild–crop species differences will have important implicationsfor understanding primary production by herbaceous species inboth natural and agricultural ecosystems in the future whenatmospheric CO2 is significantly higher than the current level.  相似文献   

2.
Seedlings of perennial ryegrass (Lolium perenne L. cv. Parcour)and white clover (Trifolium repens L. cv. Karina) grown at fivedifferent plant densities were exposed to ambient (390 ppm)and elevated (690 ppm) CO2 concentrations. After 43 d the effectsof CO2 enrichment and plant density on growth of shoot and root,nitrogen concentration of tissue, and microbial biomass carbon(Cmic) in soil were determined. CO2 enrichment of Lolium perenneincreased shoot growth on average by 17% independent of plantdensity, while effects on root biomass ranged between -4% and+ 107% due to an interaction with plant density. Since tilernumber per plant was unaffected by elevated CO2, the small responseof shoot growth to CO2 enrichment was atributed to low sinkstrength. A significant correlation between nitrogen concentrationof total plant biomass and root fraction of total plant drymatter, which was not changed by CO2 enrichment, indicates thatnitrogen status of the plant controls biomass partitioning andthe effect of CO2 enrichment on root growth. Effects of elevatedCO2 and plant density on shoot and root growth of Trifoliumrepens were not significantly interacting and mean CO2-relatedincrease amounted to 29% and 66%, respectively. However, growthenhancement due to elevated CO2 was strongest when leaf areaindex was lowest. Total amounts of nitrogen in shoots and rootswere bigger at 690 ppm than at 390 ppm CO2. There was a significantincrease in Cmic in experiments with both species whereas plantdensity had no substantial effect. Key words: CO2 enrichment, intraspecific competition, biomass partitioning, Lolium perenne, Trifolium repens, grassland  相似文献   

3.
Annual and short-lived perennial plant performance during wet years is important for long-term persistence in the Mojave Desert. Additionally, the effects of elevated CO2 on desert plants may be relatively greater during years of high resource availability compared to dry years. Therefore, during an El Niño year at the Nevada Desert FACE Facility (a whole-ecosystem CO2 manipulation), we characterized photosynthetic investment (by assimilation rate-internal CO2 concentration relationships) and evaluated the seasonal pattern of net photosynthesis (Anet) and stomatal conductance (gs) for an invasive annual grass, Bromus madritensis ssp. rubens and a native herbaceous perennial, Eriogonum inflatum. Prior to and following flowering, Bromus showed consistent increases in both the maximum rate of carboxylation by Rubisco (VCmax) and the light-saturated rate of electron flow (Jmax) at elevated CO2. This resulted in greater Anet at elevated CO2 throughout most of the life cycle and a decrease in the seasonal decline of maximum midday Anet upon flowering as compared to ambient CO2. Eriogonum showed significant photosynthetic down-regulation to elevated CO2 late in the season, but the overall pattern of maximum midday Anet was not altered with respect to phenology. For Eriogonum, this resulted in similar levels of Anet on a leaf area basis as the season progressed between CO2 treatments, but greater photosynthetic activity over a typical diurnal period. While gs did not consistently vary with CO2 in Bromus, it did decrease in Eriogonum at elevated CO2 throughout much of the season. Since the biomass of both plants increased significantly at elevated CO2, these patterns of gas exchange highlight the differential mechanisms for increased plant growth. The species-specific interaction between CO2 and phenology in different growth forms suggests that important plant strategies may be altered by elevated CO2 in natural settings. These results indicate the importance of evaluating the effects of elevated CO2 at all life cycle stages to better understand the effects of elevated CO2 on whole-plant performance in natural ecosystems.  相似文献   

4.
Nutrients such as nitrogen (N) and phosphorus (P) often limit plant growth rate and production in natural and agricultural ecosystems. Limited availability of these nutrients is also a major factor influencing long-term plant and ecosystem responses to rising atmospheric CO2 levels, i.e., the commonly observed short-term increase in plant biomass may not be sustained over the long-term. Therefore, it is critical to obtain a mechanistic understanding of whether elevated CO2 can elicit compensatory adjustments such that acquisition capacity for minerals increases in concert with carbon (C) uptake. Compensatory adjustments such as increases in (a) root mycorrhizal infection, (b) root-to-shoot ratio and changes in root morphology and architecture, (c) root nutrient absorption capacity, and (d) nutrient-use efficiency can enable plants to meet an increased nutrient demand under high CO2. Here we examine the literature to assess the extent to which these mechanisms have been shown to respond to high CO2. The literature survey reveals no consistent pattern either in direction or magnitude of responses of these mechanisms to high CO2. This apparent lack of a pattern may represent variations in experimental protocol and/or interspecific differences. We found that in addressing nutrient uptake responses to high CO2 most investigators have examined these mechanisms in isolation. Because such mechanisms can potentially counterbalance one another, a more reliable prediction of elevated CO2 responses requires experimental designs that integrate all mechanisms simultaneously. Finally, we present a functional balance (FB) model as an example of how root system adjustments and nitrogen-use efficiency can be integrated to assess growth responses to high CO2. The FB model suggests that the mechanisms of increased N uptake highlighted here have different weights in determining overall plant responses to high CO2. For example, while changes in root-to-shoot biomass allocation, r, have a small effect on growth, adjustments in uptake rate per unit root mass, [`(n)]\bar \nu , and photosynthetic N use efficiency, p*, have a significantly greater leverage on growth responses to elevated CO2 except when relative growth rate (RGR) reaches its developmental limit, maximum RGR (RGRmax).  相似文献   

5.
We used a modified functional balance (FB) model to predictgrowth response of Helianthus annuus L. to elevated CO2. Modelpredictions were evaluated against measurements obtained twiceduring the experiment. There was a good agreement between modelpredictions of relative growth rate (RGR) responses to elevatedCO2and observations, particularly at the second harvest. Themodel was then used to compare the relative effects of biomassallocation to roots, nitrogen (N) uptake and photosyntheticN-use efficiency (PNUE) in determining plant growth responseto elevated CO2. The model predicted that a rather substantialincrease in biomass allocation to root growth had little effecton whole plant growth response to elevated CO2, suggesting thatplasticity in root allocation is relatively unimportant in determininggrowth response. Average N uptake rate at elevated comparedto ambient CO2was decreased by 21–29%. In contrast, elevatedCO2increased PNUE by approx. 50% due to a corresponding risein the CO2-saturation factor for carboxylation at elevated CO2.The model predicted that the decreased N uptake rate at elevatedCO2lowered RGR modestly, but this effect was counterbalancedby an increase in PNUE resulting in a positive CO2effect ongrowth. Increased PNUE may also explain why in many experimentselevated CO2enhances biomass accumulation despite a significantdrop in tissue nitrogen concentration. The formulation of theFB model as presented here successfully predicted plant growthresponses to elevated CO2. It also proved effective in resolvingwhich plant properties had the greatest leverage on such responses.Copyright 2000 Annals of Botany Company Elevated CO2, functional balance model, Helianthus annuus L., N uptake, photosynthetic nitrogen use efficiency, root:shoot ratio  相似文献   

6.
Using open-top chambers, four prominent species (Lolium perenne,Cynosurus cristatus, Holcus lanatusandAgrostis capillaris) ofIrish neutral grasslands were grown at ambient and elevated(700 µmol mol-1) atmospheric CO2for a period of 8 months.The effects of interspecific competition on plant responsesto CO2enrichment were investigated by growing the species ina four-species mixture. The results indicate that the speciesdiffer in their ability to respond to elevated CO2. CO2-enrichmenthad the largest effect on the biomass production ofH. lanatus,but substantial stimulations in biomass production were alsofound for the other three species. The CO2-stimulation of biomassproduction forH. lanatuswas accompanied by increased tillering.In addition, reductions in specific leaf area were found forall species. Exposure to elevated CO2increased the communitybiomass of the four-species mixture. This increase can be mainlyattributed to a significant increase in the biomass ofH. lanatusatelevated CO2. No statistically-significant changes in speciescomposition of community biomass were found. However,H. lanatusdidincrease its share of community biomass at each of the harvests,with the other three species, mainlyL. perenne, suffering lossesin their shares at elevated CO2. The results show that: (1)the species varied in their response to elevated CO2; and (2)species composition in natural plant communities is likely tochange at elevated CO2, but these changes may occur rather slowly.Much longer periods of exposure to elevated atmospheric CO2maybe required to permit detection of significant changes in speciescomposition.Copyright 1998 Annals of Botany Company Carbon dioxide (CO2) enrichment, competition, Lolium perenne,Cynosurus cristatus, Holcus lanatus, Agrostis capillaris, biomass, specific leaf area, tillering.  相似文献   

7.
REY  ANA; JARVIS  PAUL G. 《Annals of botany》1997,80(6):809-816
A field experiment consisting of 18 birch trees grown in opentop chambers in ambient and elevated CO2concentrations was setup with the aim of testing whether the positive growth responseobserved in many short-term studies is maintained after severalgrowing seasons. We present the results of growth and biomassafter 4.5 years of CO2exposure, one of the longest studies sofar on deciduous tree species. We found that elevated CO2ledto a 58% increase in biomass at the end of the experiment. However,estimation of stem mass during the growing season showed thatelevated CO2did not affect relative growth rate during the fourthgrowing season, and therefore, that the large accumulation ofbiomass was the result of an early effect on relative growthrate in previous years. Trees grown in elevated CO2investedmore carbon into fine roots and had relatively less leaf areathan trees grown in ambient CO2. In contrast with previous studies,acceleration of growth did not involve a significant declinein nutrient concentrations of any plant tissue. It is likelythat increased fine root density assisted the trees in meetingtheir nutrient demands. Changes in the species composition ofthe ectomycorrhizal fungi associated with the trees grown inelevated CO2in favour of late successional species supportsthe hypothesis of an acceleration of the ontogeny of the treesin elevated CO2.Copyright 1997 Annals of Botany Company Betula pendula; silver birch; elevated CO2; growth; biomass allocation; ectomycorrhizas; tissue composition; nutrients; leaf morphology; specific leaf area; stomatal density; shoot structure  相似文献   

8.
CO2 enrichment of the atmosphere is now well documented andits effect on the growth of world forests is being questionedby the scientific community. The direct effects of increasedCO2 on tree species are reviewed: the different experimentalapproaches are described, as well as the principal results alreadyobtained. Short-term experiments have shown an increased photosyntheticrate, as predicted by leaf models. In longer experiments thisincrease is reduced after a few weeks or months by mechanismsthat remain to be found. Elevated CO2 seems to decrease thedark respiration rate, but the results are still controversial.Biomass partitioning in elevated CO2 is clearly related to themineral supply of the trees: An increase in root investmentin elevated CO2 is related to a poor mineral status. The mineralcontent of trees grown in elevated CO2 is generally loweredcompared to controls. No general rule has yet been found forthe effect of increased CO2 on leaf area development. The paper emphasizes large areas of ignorance: the reasons forthe different responses of different species, which may be relatedto their developmental strategies, are largely ignored. Muchexperimental effort is needed to parameterize all the physiologicalprocesses which are susceptible to change with an increase inatmospheric CO2, leading to a change in forest tree growth. Key words: Elevated CO2, tree, forest, photosynthesis, respiration, biomass, partitioning, mineral nutrition  相似文献   

9.
The nitrogen budget of a pine forest under free air CO2 enrichment   总被引:2,自引:0,他引:2  
Elevated concentrations of atmospheric CO2 increase plant biomass, net primary production (NPP) and plant demand for nitrogen (N). The demand for N set by rapid plant growth under elevated CO2 could be met by increasing soil N availability or by greater efficiency of N uptake. Alternatively, plants could increase their nitrogen-use efficiency (NUE), thereby maintaining high rates of growth and NPP in the face of nutrient limitation. We quantified dry matter and N budgets for a young pine forest exposed to 4 years of elevated CO2 using free-air CO2 enrichment technology. We addressed three questions: Does elevated CO2 increase forest NPP and the demand for N by vegetation? Is demand for N met by greater uptake from soils, a shift in the distribution of N between plants, microbes, and soils, or increases in NUE under elevated CO2? Will soil N availability constrain the NPP response of this forest as CO2 fumigation continues? A step-function increase in atmospheric CO2 significantly increased NPP during the first 4 years of this study. Significant increases in NUE under elevated CO2 modulated the average annual requirement for N by vegetation in the first and third growing seasons under elevated CO2; the average stimulation of NPP in these years was 21% whereas the average annual stimulation of the N requirement was only 6%. In the second and fourth growing seasons, increases in NPP increased the annual requirement for N by 27-33%. Increases in the annual requirement for N were largely met by increases in N uptake from soils. Retranslocation of nutrients prior to senescence played only a minor role in supplying the additional N required by trees growing under elevated CO2. NPP was highly correlated with between-plot variation in the annual rate of net N mineralization and CO2 treatment. This demonstrates that NPP is co-limited by C availability, as CO2 from the atmosphere, and N availability from soils. There is no evidence that soil N mineralization rates have increased under elevated CO2. The correlation between NPP and N mineralization rates and the increase in the annual requirement for N in certain years imply that soil N availability may control the long-term productivity response of this ecosystem to elevated CO2. Although we have no evidence suggesting that NPP is declining in response to >4 years of CO2 fumigation, if the annual requirement of N continues to be stimulated by elevated CO2, we predict that the productivity response of this forest ecosystem will decline over time.  相似文献   

10.
The effects of elevated atmospheric CO2 concentrations on theecophysiological responses (gas exchange, chlorophyll a fluorescence,Rubisco activity, leaf area development) as well as on the growthand biomass production of two poplar clones (i.e. Populus trichocarpax P. deltoides clone Beaupré and P. x euramericana cloneRobusta) were examined under open top chamber conditions. Theelevated CO2 treatment (ambient + 350 µmol mol-1) stimulatedabove-ground biomass of clones Robusta and Beaupré afterthe first growing season by 55 and 38%, respectively. This increasedbiomass production under elevated CO2 was associated with asignificant increase in plant height, the latter being the resultof enhanced internode elongation rather than an increased productionof leaves or internodes. Both an increased leaf area index (LAI)and a stimulated net photosynthesis per unit leaf contributedto a significantly higher stem biomass per unit leaf area, andthus to the increased above-ground biomass production underthe elevated CO2 concentrations in both clones. The larger LAIwas caused by a larger individual leaf size and leaf growthrate; the number of leaves was not altered by the elevated CO2treatment. The higher net leaf photosynthesis was the resultof an increase in the photochemical (maximal chlorophyll fluorescenceFm and photochemical efficiency Fv/Fm) as well as in the biochemical(increased Rubisco activity) process capacities. No significantdifferences were found in dark respiration rate, neither betweenclones nor between treatments, but specific leaf area significantlydecreased under elevated CO2 conditions.Copyright 1995, 1999Academic Press Biomass, chlorophyll a fluorescence, elevated CO2, growth, Populus, poplar, photosynthesis, respiration, Rubisco  相似文献   

11.
The results of published and unpublished experiments investigating the impacts of elevated [CO2] on the chemistry of leaf litter and decomposition of plant tissues are summarized. The data do not support the hypothesis that changes in leaf litter chemistry often associated with growing plants under elevated [CO2] have an impact on decomposition processes. A meta-analysis of data from naturally senesced leaves in field experiments showed that the nitrogen (N) concentration in leaf litter was 7.1% lower in elevated [CO2] compared to that in ambient [CO2]. This statistically significant difference was: (1) usually not significant in individual experiments, (2) much less than that often observed in green leaves, and (3) less in leaves with an N concentration indicative of complete N resorption. Under ideal conditions, the efficiency with which N is resorbed during leaf senescence was found not to be altered by CO2 enrichment, but other environmental influences on resorption inevitably increase the variability in litter N concentration. Nevertheless, the small but consistent decline in leaf litter N concentration in many experiments, coupled with a 6.5% increase in lignin concentration, would be predicted to result in a slower decomposition rate in CO2-enriched litter. However, across the assembled data base, neither mass loss nor respiration rates from litter produced in elevated [CO2] showed any consistent pattern or differences from litter grown in ambient [CO2]. The effects of [CO2] on litter chemistry or decomposition were usually smallest under experimental conditions similar to natural field conditions, including open-field exposure, plants free-rooted in the ground, and complete senescence. It is concluded that any changes in decomposition rates resulting from exposure of plants to elevated [CO2] are small when compared to other potential impacts of elevated [CO2] on carbon and N cycling. Reasons for experimental differences are considered, and recommendations for the design and execution of decomposition experiments using materials from CO2-enrichment experiments are outlined.  相似文献   

12.
 依托FACE(Free-air CO2 enrichment)研究平台, 利用特制分根集气生长箱, 采用静态箱-GC(Gas chromatography)法, 连续两年研究 了大气CO2浓度升高和不同氮肥水平对冬小麦拔节期、孕穗抽穗期和灌浆末期的根系呼吸及生物量的影响。两季结果表明, CO2浓度升高和高氮 肥量均不同程度地增加了3个阶段的地上部和地下部的生物量, 这有利于增加根茬的还田量; CO2浓度升高对冬小麦不同生长阶段的根系呼吸影 响不同, 在拔节期影响较小;孕穗抽穗期显著增加了根系呼吸, 2004~2005季分别增加33.8%(148.1 mg N&;#8226;kg-1 干土, HN)和43.9%(88.9 mg N&;#8226;kg-1 干土, LN), 2005~2006季分别为23.8%(HN)和28.9%(LN); 而灌浆末期显著降低了根系呼吸, 2004~2005季分别降低31.4%(HN)和23.3% (LN), 2005~2006季分别为25.1%(HN)和18.5%(LN); 高施氮量比低施氮量促进了根系呼吸; 随着作物生长根系呼吸与地下生物量呈显著线性负相 关, 高CO2环境中的R2变小,表明随着作物生长发育高CO2浓度降低了作物根系呼吸与地下部生物量积累间的相关性.  相似文献   

13.
The long-term effects of elevated CO2 and CO2+O3 concentrations on the growth allocation in northern provenances of Norway spruce [Picea abies (L.) Karst.], Scots pine [Pinus sylvestris (L.)] and pubescent birch clones (Betula pubescens Ehrh.) were examined in open-top chambers after a 4-year-long experiment. The total biomass responses of the tree seedlings to increased CO2 and CO2+O3 concentrations were not statistically significant and varied between the provenances and species. The seedlings of northern origin were the least sensitive in their response to treatments. The total biomass of the Norway spruce seedlings slightly decreased in response to CO2 in three provenances. Scots pine from the local provenance had a slight biomass increase after elevated CO2+O3 treatment. The slower-growing birch clone seemed to benefit from elevated CO2, whereas in the faster-growing clone, reductions in biomass accumulation were seen. The combined CO2+O3 treatment reduced the positive effects of elevated CO2, especially in the slower-growing birches. Observations of significant effects were limited to a few parameters. Carbon dioxide treatment decreased needle dry weight of Norway spruce in one northern provenance. The needle and wood dry weight increased (CO2 + O3) in local Scots pine. Significant birch response was limited to increased fine root density (O3 + CO2) in the inland clone. The diverse effects of elevated CO2 and CO2 +O3 on seedling growth and biomass provide evidence that exposure of northern trees to the enhanced variable CO2 and O3 concentrations of the future will have varied effects on the growth of these species. The direction and magnitude of those effects will differ depending on species and origins.  相似文献   

14.
To elucidate how atmospheric CO2 enrichment, enhanced nutrient supply and soil quality interact to affect regrowth of temperate forests, young Fagus sylvatica and Picea abies trees were grown together in large model ecosystems. Identical communities were established on a nutrient-poor acidic and on a more fertile calcareous soil and tree growth, leaf area index, fine root density and soil respiration monitored over four complete growing seasons. Biomass responses to CO2 enrichment and enhanced N supply at the end of the experiment reflected compound interest effects of growth stimulation during the first two to three seasons rather than persistent stimulation over the whole duration of the experiment. Whereas biomass of Picea was enhanced in elevated CO2 on both soils, Fagus responded negatively to CO2 on acidic but positively on calcareous soil. Biomass of both species profited from enhanced N supply on the poor acidic soil only. Leaf area index on both soils was greater in high N supply as a consequence of a stimulation early in the experiment, but was unaffected by CO2 enrichment. Fine root density on acidic soil was increased in high N supply, but this did not stimulate soil respiration rate. In contrast, elevated CO2 stimulated both fine root density and soil CO2 efflux on calcareous soil, especially towards the end of the experiment. Our experiment suggests that future species dominance in beech-spruce forests is likely to change in response to CO2 enrichment, but this response is subject to complex interactions with environmental factors other than CO2, particularly soil type.  相似文献   

15.
Rising atmospheric CO2 greatly enhances plant production, but its effect on biomass allocation, particularly in the presence of environmental stresses, is not well understood. Here, we used meta-analysis combined with pairwise techniques to examine root mass fraction (RMF; i.e., the fraction of root to total biomass) as affected by elevated CO2 and environmental stresses. Our results showed that lower soil fertility increased RMF and the magnitude was similar for ambient and elevated CO2-grown plants. Lower soil water also increased RMF, but to a greater extent at elevated than at ambient CO2. While CO2 enrichment had little effect on the magnitude of O3-caused reduction in RMF in herbaceous species, it alleviated the adverse effect of higher O3 on root production in woody species. These results demonstrate that CO2 has less pronounced effects on RMF than other environmental factors. Under abiotic stresses, e.g., drought and higher O3, elevated CO2-grown plants will likely increase biomass allocation below-ground. Because of the non-uniform changes in drought and O3 projected for different parts of the world, we conclude that elevated CO2 will have regional, but not global, effects on biomass allocation under various global change scenarios.  相似文献   

16.
We constructed a model simulating growth, shoot-root partitioning,plant nitrogen (N) concentration and total non-structural carbohydratesin perennial grasses. Carbon (C) allocation was based on theconcept of a functional balance between root and shoot growth,which responded to variable plant C and N supplies. Interactionsbetween the plant and environment were made explicit by wayof variables for soil water and soil inorganic N. The modelwas fitted to data on the growth of two species of perennialgrass subjected to elevated atmospheric CO2and water stresstreatments. The model exhibited complex feedbacks between plantand environment, and the indirect effects of CO2and water treatmentson soil water and soil inorganic N supplies were important ininterpreting observed plant responses. Growth was surprisinglyinsensitive to shoot-root partitioning in the model, apparentlybecause of the limited soil N supply, which weakened the expectedpositive relationship between root growth and total N uptake.Alternative models for the regulation of allocation betweenshoots and roots were objectively compared by using optimizationto find the least squares fit of each model to the data. Regulationby various combinations of C and N uptake rates, C and N substrateconcentrations, and shoot and root biomass gave nearly equivalentfits to the data, apparently because these variables were correlatedwith each other. A partitioning function that maximized growthpredicted too high a root to shoot ratio, suggesting that partitioningdid not serve to maximize growth under the conditions of theexperiment.Copyright 1998 Annals of Botany Company plant growth model, optimization, nitrogen, non-structural carbohydrates, carbon partitioning, elevated CO2, water stress,Pascopyrum smithii,Bouteloua gracilis, photosynthetic pathway, maximal growth  相似文献   

17.
The effects of elevated carbon dioxide (CO2 and ozone (O3) onsoybean (Glycine max (L.) Merr.] photosynthesis and photorespiration-relatedparameters were determined periodically during the growing seasonby measurements of gas exchange, photorespiratory enzyme activitiesand amino acid levels. Plants were treated in open-top fieldchambers from emergence to harvest maturity with seasonal meanconcentrations of either 364 or 726 µmol mol–1 CO2in combination with either 19 or 73 nmol mol–1 O3 (12h daily averages). On average at growth CO2 concentrations,net photosynthesis (A) increased 56% and photorespiration decreased36% in terminal mainstem leaves with CO2 enrichment. Net photosynthesisand photorespiration were suppressed 30% and 41%, respectively,by elevated O3 during late reproductive growth in the ambientCO2 treatment, but not in the elevated CO2 treatment. The ratioof photorespiration to A at growth CO2 was decreased 61% byelevated CO2 There was no statistically significant effect ofelevated O3 on the ratio of photorespiration to A. Activitiesof glycolate oxidase, hydroxypyruvate reductase and catalasewere decreased 10–25% by elevated CO2 and by 46–66%by elevated O3 at late reproductive growth. The treatments hadno significant effect on total amino acid or glycine levels,although serine concentration was lower in the elevated CO2and O3 treatments at several sampling dates. The inhibitoryeffects of elevated O3 on photorespiration-related parameterswere generally commensurate with the O3-induced decline in A.The results suggest that elevated CO2 could promote productivityboth through increased photoassimilation and suppressed photorespiration. Key words: Photorespiration, CO2-enrichment, ozone, climate change, air pollution  相似文献   

18.
Enriched atmospheric CO2 alters the quantity and quality of plant production, but how such effects vary among plant genotypes is poorly known. We evaluated the independent and interactive effects of CO2 and nutrient availability on growth, allocation and phytochemistry of six aspen (Populus tremuloides Michx.) genotypes. One-year-old trees, propagated from root cuttings, were grown in CO2-controlled glasshouses for 64 days, then harvested. Foliage was analyzed for levels of water, nitrogen, starch, phenolic glycosides and condensed tannins. Of seven plant growth/allocation variables measured, four (biomass production, stem growth, relative growth rate and root:shoot ratio) exhibited marginally to highly significant CO2 2 genotype interactions. CO2 enrichment stimulated growth of some genotypes more than others, and this interaction was itself influenced by soil nutrient availability. In addition, enriched CO2 increased the magnitude of the among-genotype variance for four of the growth/allocation variables. Of six foliar chemical constituents analyzed, CO2-mediated responses of two (the phenolic glycoside tremulacin and condensed tannins) varied among genotypes. Moreover, enriched CO2 increased the magnitude of among-genotype variance for four of the chemical variables. Given the importance of these growth and chemical characteristics to the biological fitness of aspen, this research suggests that projected atmospheric CO2 increases are likely to alter the genetic structures and evolutionary trajectories of aspen populations.  相似文献   

19.
Shoot and reproductive biomass of genotypes of Bromus erectus and Dactylis glomerata grown in competition at ambient and elevated CO2 were examined for 2 consecutive years in order to test whether genetic variation in those traits exists and whether it is maintained over time. At the species level, a positive CO2 response of shoot biomass of both species was only found in the first year of treatment. At the genotype level, no significant CO22genotype interaction was found at any single harvest either for vegetative or reproductive biomass of either species. Analysis over time, however, indicated that there is a potential for evolutionary adaptation only for D. glomerata: (1) repeated measures ANOVA detected a marginally significant CO22genotype2time interaction for shoot biomass, because the range of the genotypes CO2 response increased over time; (2) genotypes that displayed the highest response during the first year under elevated CO2 also showed the highest response the second year. Null (B. erectus) or weak (D. glomerata) selective potentials of elevated CO2 were detected in this experiment, but short time series could underestimate this potential with perennial species.  相似文献   

20.
Opuntia ficus-indica, an extremely productive CAM plant cultivatedin many countries, was exposed to 36, 52, and 72–73 PaCO2 in field plots and open-top chambers. Initiation of newcladodes (stem segments) was monitored until the canopy closed,after which bimonthly harvests maintained the plants for oneyear at a cladode area per unit ground area that is optimalfor biomass production. Doubling the CO2 partial pressure slightlyincreased the number of first-order daughter cladodes growingon the basal (planted) cladodes after 3 months and nearly doubledthe number and area of second-order cladodes. When the C02 levelwas doubled, cladodes were 5% thicker after a few months and11 to 16% thicker after one year. Although the productivityenhancement by elevated C02 tended to decrease during the year,the annual above-ground dry-mass gain was 37 to 40% higher whenthe C02 level was doubled, reaching 65 tons hectare–1year–1 in a field plot. Well-watered cladodes at day/nightair temperatures of 25°C/15°C and a total daily photosyntheticphoton flux (PPF) of 15 mol m–2 d–1 in controlledenvironment chambers had 74% more net CO2 uptake over 24 h at73 Pa than at 37 Pa CO2. With doubled CO2, the percentage enhancementof net CO2 uptake increased as the PPF was lowered, as the temperaturewas raised, and during drought. Using an environmental productivityindex based on such factors, net CO2 uptake and hence productivityof O. ficus-indica can be predicted for elevated CO2 levelsand other variations accompanying global climate change. Key words: Crassulacean acid metabolism, environmental productivity index, gas exchange, global climate change, plant growth  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号