共查询到20条相似文献,搜索用时 9 毫秒
1.
Residual force enhancement after stretch of contracting frog single muscle fibers 总被引:14,自引:0,他引:14 下载免费PDF全文
《The Journal of general physiology》1982,80(5):769-784
Single fibers from the tibialis anterior muscle of Rana temporaria at 0.8-3.8 degrees C were subjected to long tetani lasting up to 8 s. Stretch of the fiber early in the tetanus caused an enhancement of force above the isometric control level which decayed only slowly and stayed higher throughout the contraction. This residual enhancement was uninfluenced by velocity of stretch and occurred only on the descending limb of the length-tension curve. The absolute magnitude of the effect increased with sarcomere length to a maximum at approximately 2.9 micrometers and then declined. The phenomenon was further characterized by its dependence on the amplitude of stretch. The final force level reached after stretch was usually higher than the isometric force level corresponding to the starting length of the stretch. The possibility that the phenomenon was caused by nonuniformity of sarcomere length along the fiber was examined by (a) laser diffraction studies that showed sarcomere stretch at all locations and (b) studies of 9-10 segments of approximately 0.6-0.7 mm along the entire fiber, which all elongated during stretch. Length-clamped segments showed residual force enhancement after stretch when compared with the tetanus produced by the same segment held at the short length as well as at the long length. It is concluded that residual force enhancement after stretch is a property shown by all individual segments along the fiber. 相似文献
2.
Stretch-induced force enhancement has been observed in a variety of muscle preparations and on structural levels ranging from single fibers to in vivo human muscles. It is a well-accepted property of skeletal muscle. However, the mechanism causing force enhancement has not been elucidated, although the sarcomere-length non-uniformity theory has received wide support. The purpose of this paper was to re-investigate stretch-induced force enhancement in frog single fibers by testing specific hypotheses arising from the sarcomere-length non-uniformity theory. Single fibers dissected from frog tibialis anterior (TA) and lumbricals (n=12 and 22, respectively) were mounted in an experimental chamber with physiological Ringer's solution (pH=7.5) between a force transducer and a servomotor length controller. The tetantic force-length relationship was determined. Isometric reference forces were determined at optimum length (corresponding to the maximal, active, isometric force), and at the initial and final lengths of the stretch experiments. Stretch experiments were performed on the descending limb of the force-length relationship after maximal tetanic force was reached. Stretches of 2.5-10% (TA) and 5-15% lumbricals of fiber length were performed at 0.1-1.5 fiber lengths/s. The stretch-induced, steady-state, active isometric force was always equal or greater than the purely isometric force at the muscle length from which the stretch was initiated. Moreover, for stretches of 5% fiber length or greater, and initiated near the optimum length of the fiber, the stretch-enhanced active force always exceeded the maximal active isometric force at optimum length. Finally, we observed a stretch-induced enhancement of passive force. We conclude from these results that the sarcomere length non-uniformity theory alone cannot explain the observed force enhancement, and that part of the force enhancement is associated with a passive force that is substantially greater after active compared to passive muscle stretch. 相似文献
3.
《The Journal of general physiology》1975,65(1):97-113
The longitudinal impedance of single skeletal muscle fibers has been measured from1 to 10,000 Hz in an oil gap apparatus which forces current to flow longitudinally down the fiber. The impedance observed is purely resistive in some fibers from the semitendinosus muscle and in two fibers from the sartorius muscle. In other fibers from the semitendinosus muscle a small phase shift is observed. The mean value of the maximum phase shift observed from all fibers is 1.07 degrees. The artifacts associated with the apparatus and method are examined theoretically and it is shown that one of the likely artifacts could account for the small phase observed. It is concluded that the longitudinal impedance of skeletal muscle fibers is essentially resistive and that little, if any, longitudinal current crosses the membranes of the sarcoplasmic reticulum. 相似文献
4.
Stretch-induced enhancement of mechanical power output in human multijoint exercise with countermovement 总被引:1,自引:0,他引:1
Takarada Yudai; Hirano Yuichi; Ishige Yusuke; Ishii Naokata 《Journal of applied physiology》1997,83(5):1749-1755
Takarada, Yudai, Yuichi Hirano, Yusuke Ishige, and NaokataIshii. Stretch-induced enhancement of mechanical power output inhuman multijoint exercise with countermovement. J. Appl. Physiol. 83(5): 1749-1755, 1997.Therelation between the eccentric force developed during a countermovementand the mechanical power output was studied in squatting exercisesunder nominally isotonic load (50% of 1-repetition maximum). Thesubjects (n = 5) performed squattingexercises with a countermovement at varied deceleration rates beforelifting the load. The ground reaction force and video images wererecorded to obtain the power output of the body. Net muscle momentsacting at hip, knee, and ankle joints were calculated from videorecordings by using inverse dynamics. When an intense deceleration wastaken at the end of downward movement, large eccentric force wasdeveloped, and the mechanical power subsequently produced during thelifting movement was consistently larger than that produced without thecountermovement. Both maximal and mean power outputs during concentricactions increased initially with the eccentric force, whereas theybegan to decline when the eccentric force exceeded ~1.4 times the sumof load and body weight. Video-image analysis showed that thischaracteristic relation was predominantly determined by the torquearound the knee joint. Electromyographic analyses showed no consistentincrease in time-averaged integrated electromyograph from vastuslateralis with the power output, suggesting that the enhancement ofpower output is primarily caused by the prestretch-induced improvementof an intrinsic force-generating capability of the agonist muscle. 相似文献
5.
The question of whether A-bands shorten during contraction was investigated using two methods: high-resolution polarization microscopy and electron microscopy. During shortening from extended sarcomere lengths in the passive state, sarcomere-length changes were essentially accounted for by I-band shortening. During active shortening under otherwise identical conditions, the sarcomere length change was taken up approximately equally by A- and I-bands. Several potential artifacts that could give rise to apparent A-band shortening were considered and judged unlikely. Results obtained with polarization microscopy were similar to those obtained with electron microscopy. Thus, modest but significant thick filament shortening appears to occur during active sarcomere shortening under physiological conditions. 相似文献
6.
7.
8.
9.
10.
V Nassar-Gentina J V Passonneau J L Vergara S I Rapoport 《The Journal of general physiology》1978,72(5):593-606
Fatigue and recovery from fatigue were related to metabolism in single fibers of the frog semitendinosus muscle. The fibers were held at a sarcomere length of 2.3 microm in oxygenated Ringer solution at 15 degrees C and were stimulated for up to 150 s by a schedule of 10-s, 20-Hz tetanic trains that were interrupted by 1-s rest periods, after which they were rapidly frozen for biochemical analysis. Two kinds of fatigue were produced in relation to stimulus duration. A rapidly reversed fatigue occurred with stimulation for under 40 s and was evidenced by a decline in tetanic tension that could be overcome by 1 s of rest. A prolonged fatigue was caused by stimulation for 100-150 s. It was evidenced during stimulation by a fall in tetanic tension that could not be overcome by 1 s of rest, and after stimulation by a reduction, lasting for up to 82 min, in the peak tension of a 200-ms test tetanus. Fiber phosphocreatine (PCr) fell logarithmically in relation to stimulus duration, from a mean of 121 +/- 8 nmol/mg protein (SEM, n = 12) to 10% of this value after 150 s of stimulation. PCr returned to normal levels after 90-120 min of rest. Stimulation for 150 s did not significantly affect fiber glycogen and reduced fiber ATP by at most 15%. It is suggested that the prolonged fatigue caused by 100-150 s of tetanic stimulation was caused by long-lasting failure of excitation-contraction coupling, as it was not accompanied by depletion of energy stores in the form of ATP. One possibility is that H+ accumulated in fatigued fibers so as to interfere with the action of Ca2+ in the coupling process. 相似文献
11.
12.
The main purpose of this study was to evaluate the effects of shortening on the stretch-induced force enhancement in single muscle fibers, and indirectly test the hypothesis that force enhancement may be associated with the engagement of a passive element upon activation. Fibers were placed on the descending limb of the force-length relationship, and stretch and shortening contractions were performed. Fibers underwent two sets of shortening-stretch cycles. First, fibers were shortened by a fixed amplitude and speed (10% fiber length, and at 40% fiber length/s), and then were stretched (10% fiber length, and at 40% fiber length/s) immediately following shortening, or 500 or 1000 ms following the shortening. Second, fibers were shortened by varying amounts (5%, 10% and 15% fiber length) and at a constant speed (40% fiber length/s) immediately preceding a given fiber stretch (10% fiber length, and at 40% fiber length/s). When stretching was immediately preceded by shortening, force enhancement was decreased proportionally with the shortening magnitude. When intervals were introduced between shortening and stretch, the effects of shortening on the stretch-induced force enhancement became less prominent. We concluded that, in contrast to published suggestions, shortening affects the stretch-induced force enhancement in an amplitude-dependent manner in single fibers, as it does in whole muscles, but this effect is diminished by increasing the time period between the shortening and stretch phases. 相似文献
13.
Sarcomere length dependence of the force-velocity relation in single frog muscle fibers. 总被引:2,自引:0,他引:2 下载免费PDF全文
The force-velocity relation of single frog fibers was measured at sarcomere lengths of 2.15, 2.65, and 3.15 microns. Sarcomere length was obtained on-line with a system that measures the distance between two markers attached to the surface of the fiber, approximately 800 microns apart. Maximal shortening velocity, determined by extrapolating the Hill equation, was similar at the three sarcomere lengths: 6.5, 6.0, and 5.7 microns/s at sarcomere lengths of 2.15, 2.65, and 3.15 microns, respectively. For loads not close to zero the shortening velocity decreased with increasing sarcomere length. This was the case when force was expressed as a percentage of the maximal force at optimal fiber length or as a percentage of the sarcomere-isometric force at the respective sarcomere lengths. The force-velocity relation was discontinuous around zero velocity: load clamps above the level that kept sarcomeres isometric resulted in stretch that was much slower than when the load was decreased below isometric by a similar amount. We fitted the force-velocity relation for slow shortening (less than 600 nm/s) and for slow stretch (less than 200 nm/s) with linear regression lines. At a sarcomere length of 2.15 microns the slopes of these lines was 8.6 times higher for shortening than for stretch. At 2.65 and 3.15 microns the values were 21.8 and 14.1, respectively. At a sarcomere length of 2.15 microm, the velocity of stretch abruptly increased at loads that were 160-170% of the sarcomere isometric load, i.e., the muscle yielded. However, at a sarcomere length of 2.65 and 3.15 microm yield was absent at such loads. Even the highest loads tested (260%) resulted in only slow stretch.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
Effect of temperature on residual force enhancement in single skeletal muscle fibers 总被引:1,自引:0,他引:1
It is well accepted that the steady-state isometric force following active stretching of a muscle is greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This property of skeletal muscle has been called residual force enhancement (FE). Despite decades of research the mechanisms responsible for FE have remained largely unknown. Based on previous studies showing increases in FE in fibers in which cross-bridges were biased towards weakly bound states, we hypothesized that FE might be associated with a stretch-induced facilitation of transitioning from weakly to strongly bound cross-bridges. In order to test this hypothesis, single fibers (n=11) from the lumbrical muscles of frog (Rana pipiens) were used to determine FE at temperatures of 7 and 20 degrees C. At the cold temperature, cross-bridges are biased towards weakly bound states, therefore we expected FE to be greater at 7 degrees C compared to 20 degrees C. The average FE was significantly greater at 7 degrees C (11.5+/-1.1%) than at 20 degrees C (7.8+/-1.0%), as expected. The enhancement of force/stiffness was also significantly greater at the low (13.3+/-1.4%) compared to the high temperature (5.6+/-1.7%), indicating an increased conversion from weakly to strongly bound cross-bridges at the low temperature. We conclude from the results of this study that muscle preparations that are biased towards weakly bound cross-bridge states show increased FE for given stretch conditions, thereby supporting the idea that FE might be caused, in part, by a stretch-induced facilitation of the conversion of weakly to strongly bound cross-bridges. 相似文献
15.
Stretch-induced nitric oxide modulates mechanical properties of skeletal muscle cells 总被引:1,自引:0,他引:1
In this study, we examined the hypothesis that stretch-induced (nitric oxide) NO modulates the mechanical properties of skeletal muscles by increasing accumulation of protein levels of talin and vinculin and by inhibiting calpain-induced proteolysis, thereby stabilizing the focal contacts and the cytoskeleton. Differentiating C2C12 myotubes were subjected to a single 10% step stretch for 04 days. The apparent elastic modulus of the cells, Eapp, was subsequently determined by atomic force microscopy. Static stretch led to significant increases (P < 0.01) in Eapp beginning at 2 days. These increases were correlated with increases in NO activity and neuronal NO synthase (nNOS) protein expression. Expression of talin was upregulated throughout, whereas expression of vinculin was significantly increased only on days 3 and 4. Addition of the NO donor L-arginine onto stretched cells further enhanced Eapp, NOS activity, and nNOS expression, whereas the presence of the NO inhibitor N-nitro-L-arginine methyl ester (L-NAME) reversed the effects of mechanical stimulation and of L-arginine. Overall, viscous dissipation, as determined by the value of hysteresis, was not significantly altered. For assessment of the role of vinculin and talin stability, cells treated with L-NAME showed a significant decrease in Eapp, whereas addition of a calpain inhibitor abolished the effect. Thus our results show that NO inhibition of calpain-initiated cleavage of cytoskeleton proteins was correlated with the changes in Eapp. Together, our data suggest that NO modulates the mechanical behavior of skeletal muscle cells through the combined action of increased talin and vinculin levels and a decrease in calpain-mediated talin proteolysis. mechanical stimulation; apparent elastic modulus; skeletal muscle cells; nitric oxide; stretch 相似文献
16.
The Ca2+-sensitive photoprotein aequorin was injected into single frog skeletal muscle fibers, and the intracellular aequorin light intensity during muscle activation with different maneuvers was mapped with digital imaging microscopy. During 50 Hz electrical activation (tetanus), the aequorin light intensity from different locations in the muscle fiber rose with very similar time course. Caffeine (10 mM) application, on the other hand, caused aequorin light signals to show significantly different time courses, with an earlier increase in Ca2+ concentration near the surface of the fiber than near the core. The non-uniform rise of intracellular Ca2+ concentration with caffeine treatment is consistent with the slow inward diffusion of caffeine and subsequent Ca2+ release from sarcoplasmic reticulum. 相似文献
17.
18.
Biphasic potassium contractures in frog muscle fibers 总被引:1,自引:1,他引:1
L L Costantin 《The Journal of general physiology》1971,58(2):117-130
Potassium-induced contractures were studied in single fibers from the semitendinosus muscle of Rana pipiens. Contractures elicited by solutions containing 60–117 mM potassium and 120 mM chloride were biphasic, consisting of a rapid initial contraction with a duration at 23°C of less than 1 sec followed by a slow response with a duration of many seconds. At 13°C, the initial response was greatly prolonged so that the two responses virtually fused into a single smooth contracture. Membrane potential in high potassium, high chloride solutions underwent a transient peak depolarization, probably as a result of time-dependent changes in membrane conductance during depolarization. It is proposed that this complex time course of depolarization gives rise to the biphasic contracture response. 相似文献
19.
W.F. Gilly 《Tissue & cell》1975,7(1):203-210
Extrafusal slow fibers have been identified by electron microscopy in a muscle fiber bundle isolated from the anterior head (m. cruralis) of the triceps femoris of Rana pipiens. Light microscopic examination of this muscle revealed two equally numerous fiber types, one Fibrillenstruktur-like (twitch) and the other structureless (slow). A comparison of force developed by tetanic stimulation and by K+ depolarization also suggested approximately equal numbers of twitch and slow fibers. 相似文献
20.
Bagni MA Colombini B Geiger P Berlinguer Palmini R Cecchi G 《American journal of physiology. Cell physiology》2004,286(6):C1353-C1357
At the end of the force transient elicited by a fast stretch applied to an activated frog muscle fiber, the force settles to a steady level exceeding the isometric level preceding the stretch. We showed previously that this excess of tension, referred to as "static tension," is due to the elongation of some elastic sarcomere structure, outside the cross bridges. The stiffness of this structure, "static stiffness," increased upon stimulation following a time course well distinct from tension and roughly similar to intracellular Ca2+ concentration. In the experiments reported here, we investigated the possible role of Ca2+ in static stiffness by comparing static stiffness measurements in the presence of Ca2+ release inhibitors (D600, Dantrolene, 2H2O) and cross-bridge formation inhibitors [2,3-butanedione monoxime (BDM), hypertonicity]. Both series of agents inhibited tension; however, only D600, Dantrolene, and 2H2O decreased at the same time static stiffness, whereas BDM and hypertonicity left static stiffness unaltered. These results indicate that Ca2+, in addition to promoting cross-bridge formation, increases the stiffness of an (unidentified) elastic structure of the sarcomere. This stiffness increase may help in maintaining the sarcomere length uniformity under conditions of instability. intact muscle fiber; static stiffness; tension inhibitors; titin 相似文献