首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell-cell interactions play important roles in a variety of developmental processes, and therefore molecules involved in the signaling pathways have been studied extensively. Recently, the draft genome sequence of the basal chordate, Ciona intestinalis, was determined. Here we annotated genes for the signaling pathways of Wnt, transforming growth factor beta (TGFbeta), Hedgehog, and JAK/STAT in the genome of Ciona intestinalis. The Ciona genome contains ten wnt genes, six frizzled genes, four sFRP genes, ten TGFbeta family member genes, five TGFbeta-receptor genes, and five Smad genes; most of the genes were found with less redundancy than in vertebrate genomes. The other genes in the signaling pathways are present as a single copy in the Ciona genome. In addition, all of the identified genes for the signaling pathway, except for a few genes, have EST evidence, and their cDNAs are available from the Ciona intestinalis gene collection. Therefore, Ciona intestinalis may provide an experimental system for exploring the basic genetic cascade associated with the signaling pathways in chordates.  相似文献   

3.
Henk DA  Fisher MC 《PloS one》2012,7(2):e31268
Fungal genomes range in size from 2.3 Mb for the microsporidian Encephalitozoon intestinalis up to 8000 Mb for Entomophaga aulicae, with a mean genome size of 37 Mb. Basidiobolus, a common inhabitant of vertebrate guts, is distantly related to all other fungi, and is unique in possessing both EF-1α and EFL genes. Using DNA sequencing and a quantitative PCR approach, we estimated a haploid genome size for Basidiobolus at 350 Mb. However, based on allelic variation, the nuclear genome is at least diploid, leading us to believe that the final genome size is at least 700 Mb. We also found that EFL was in three times the copy number of its putatively functionally overlapping paralog EF-1α. This suggests that gene or genome duplication may be an important feature of B. ranarum evolution, and also suggests that B. ranarum may have mechanisms in place that favor the preservation of functionally overlapping genes.  相似文献   

4.
Genome compaction and stability in microsporidian intracellular parasites   总被引:13,自引:0,他引:13  
Microsporidian genomes are extraordinary among eukaryotes for their extreme reduction: although they are similar in form to other eukaryotic genomes, they are typically smaller than many prokaryotic genomes. At the same time, their rates of sequence evolution are among the highest for eukaryotic organisms. To explore the effects of compaction on nuclear genome evolution, we sequenced 685,000 bp of the Antonospora locustae genome (formerly Nosema locustae) and compared its organization with the recently completed genome of the human parasite Encephalitozoon cuniculi. Despite being very distantly related, the genomes of these two microsporidian species have retained an unexpected degree of synteny: 13% of genes are in the same context, and 30% of the genes were separated by a small number of short rearrangements. Microsporidian genomes are, therefore, paradoxically composed of rapidly evolving sequences harbored within a slowly evolving genome, although these two processes are sometimes considered to be coupled. Microsporidian genomes show that eukaryotic genomes (like genes) do not evolve in a clock-like fashion, and genome stability may result from compaction in addition to a lack of recombination, as has been traditionally thought to occur in bacterial and organelle genomes.  相似文献   

5.
The rapidly emerging field of comparative genomics has yielded dramatic results. Comparative genome analysis has become feasible with the availability of a number of completely sequenced genomes. Comparison of complete genomes between organisms allow for global views on genome evolution and the availability of many completely sequenced genomes increases the predictive power in deciphering the hidden information in genome design, function and evolution. Thus, comparison of human genes with genes from other genomes in a genomic landscape could help assign novel functions for un-annotated genes. Here, we discuss the recently used techniques for comparative genomics and their derived inferences in genome biology.  相似文献   

6.
7.
8.
Horizontal gene transfer, a process through which genomes acquire sequences from distantly related organisms, is believed to be a major source of genetic diversity in bacteria. A central question concerning the impact of gene transfer on bacterial genome evolution is the proportion of horizontally transferred sequences within genomes. Through BLAST search, we found that the genomes of two phytopathogens, Xanthomonas campestris pv. campestris and Xanthomonas axonopodis pv. citri, have close to 40% of the genes with the highest similarity to genes from phylogenetically distant organisms (non-gamma-proteobacteria). Most of these genes are found to be contiguous in the genome, forming genome islands, which may have been transferred from other organisms. Overall, the total number of genes within genome islands corresponds to almost one quarter of the entire xanthomonad genomes. Interestingly, many of the genes in these islands are functionally related to plant pathogenesis and virulence. Thus, these results suggest that horizontally transferred genes are clustered in the genome, and may facilitate fitness in new environments, as in the case of plant-bacteria interaction.  相似文献   

9.
Zhang T  Fang Y  Wang X  Deng X  Zhang X  Hu S  Yu J 《PloS one》2012,7(1):e30531
The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage.  相似文献   

10.
11.
Physical mapping of rDNA loci in Brassica species.   总被引:8,自引:0,他引:8  
The number of major rDNA loci (the genes coding for 18S-5.8S-26S rRNA) was investigated in the economically important Brassica species and their wild relatives by in situ hybridization of an rDNA probe to metaphase chromosomes and interphase nuclei. The diploid species B. nigra (B genome) has two major pairs of rDNA loci, B. oleracea (C genome) has two major pairs and one minor pair of loci, while B. campestris (A genome) has five pairs of loci. Among the three tetraploid species arising from these three diploid ancestors, B. carinata (BBCC genomes) has four loci, B. juncea (AABB genomes) has five major pairs and one minor pair of loci, and B. napus (AACC genomes) has six pairs of loci, indicating that the number of loci has been reduced during evolution. The complexity of the known rDNA restriction fragment length polymorphism patterns gave little indication of number of rDNA loci. It is probable that chromosome rearrangements have occurred during evolution of the amphidiploid species. The data will be useful for physical mapping of genes relative to rDNA loci, micro- and macro-evolutionary studies and analysis of aneuploids including addition and substitution lines used in Brassica breeding programs.  相似文献   

12.
The predicted gene models derived from the sea urchin genome were compared to the gene catalogs derived from other completed genomes. The models were categorized by their best match to conserved protein domains. Identification of potential orthologs and assignment of sea urchin gene models to groups of homologous genes was accomplished by BLAST alignment and through the use of a clustering algorithm. For the first time, an overview of the sea urchin genetic toolkit emerges and by extension a more precise view of the features shared among the gene catalogs that characterize the super-clades of animals: metazoans, bilaterians, chordate and non-chordate deuterostomes, ecdysozoan and lophotrochozoan protostomes. About one third of the 40 most prevalent domains in the sea urchin gene models are not as abundant in the other genomes and thus constitute expansions that are specific at least to sea urchins if not to all echinoderms. A number of homologous groups of genes previously restricted to vertebrates have sea urchin representatives thus expanding the deuterostome complement. Obversely, the absence of representatives in the sea urchin confirms a number of chordate specific inventions. The specific complement of genes in the sea urchin genome results largely from minor expansions and contractions of existing families already found in the common metazoan "toolkit" of genes. However, several striking expansions shed light on how the sea urchin lives and develops.  相似文献   

13.
Hox and other Antennapedia (ANTP)-like homeobox gene subclasses - ParaHox, EHGbox, and NK-like - contribute to key developmental events in bilaterians [1-4]. Evidence of physical clustering of ANTP genes in multiple animal genomes [4-9] suggests that all four subclasses arose via sequential cis-duplication events. Here, we show that Hox genes' origin occurred after the divergence of sponge and eumetazoan lineages and occurred concomitantly with a major evolutionary transition in animal body-plan complexity. By using whole genome information from the demosponge Amphimedon queenslandica, we provide the first conclusive evidence that the earliest metazoans possessed multiple NK-like genes but no Hox, ParaHox, or EHGbox genes. Six of the eight NK-like genes present in the Amphimedon genome are clustered within 71 kb in an order akin to bilaterian NK clusters. We infer that the NK cluster in the last common ancestor to sponges, cnidarians, and bilaterians consisted of at least five genes. It appears that the ProtoHox gene originated from within this ancestral cluster after the divergence of sponge and eumetazoan lineages. The maintenance of the NK cluster in sponges and bilaterians for greater than 550 million years is likely to reflect regulatory constraints inherent to the organization of this ancient cluster.  相似文献   

14.
In the present study, genes involved in the pathways that establish cell polarity and cascades regulating actin dynamics were identified in the completely sequenced genome of Ciona intestinalis, a basal chordate. It was revealed that the Ciona genome contains orthologous genes of each component of aPKC-Par and PCP pathways and WASP/WAVE/SCAR and ADF/cofilin cascades, with less redundancy than the vertebrate genomes, suggesting that the conserved pathways/cascades function in Ciona development. In addition, the present study found that the orthologous proteins of five gene groups (Tc10, WRCH, RhoD, PLC-L, and PSKH) are conserved in humans and Ciona but not in Drosophila melanogaster, suggesting a similarity in the gene composition of Ciona to that of vertebrates. Ciona intestinalis, therefore, may provide refined clues for the study of vertebrate development and evolution.  相似文献   

15.
Genomes at the interface between bacteria and organelles   总被引:1,自引:0,他引:1  
The topic of the transition of the genome of a free-living bacterial organism to that of an organelle is addressed by considering three cases. Two of these are relatively clear-cut as involving respectively organisms (cyanobacteria) and organelles (plastids). Cyanobacteria are usually free-living but some are involved in symbioses with a range of eukaryotes in which the cyanobacterial partner contributes photosynthesis, nitrogen fixation, or both of these. In several of these symbioses the cyanobacterium is vertically transmitted, and in a few instances, sufficient unsuccessful attempts have been made to culture the cyanobiont independently for the association to be considered obligate for the cyanobacterium. Plastids clearly had a cyanobacterial ancestor but cannot grow independently of the host eukaryote. Plastid genomes have at most 15% of the number of genes encoded by the cyanobacterium with the smallest number of genes; more genes than are retained in the plastid genome have been transferred to the eukaryote nuclear genome, while the rest of the cyanobacterial genes have been lost. Even the most cyanobacteria-like plastids, for example the "cyanelles" of glaucocystophyte algae, are functionally and genetically very similar to other plastids and give little help in indicating intermediates in the evolution of plastids. The third case considered is the vertically transmitted intracellular bacterial symbionts of insects where the symbiosis is usually obligate for both partners. The number of genes encoded by the genomes of these obligate symbionts is intermediate between that of organelles and that of free-living bacteria, and the genomes of the insect symbionts also show rapid rates of sequence evolution and AT (adenine, thymine) bias. Genetically and functionally, these insect symbionts show considerable similarity to organelles.  相似文献   

16.
17.
Extracellular matrix (ECM) is a key metazoan characteristic. In addition to providing structure and orientation to tissues, it is involved in many cellular processes such as adhesion, migration, proliferation and differentiation. Here we provide a comprehensive analysis of ECM molecules focussing on when vertebrate specific matrices evolved. We identify 60 ECM genes and 20 associated processing enzymes in the genome of the urochordate Ciona intestinalis. A comparison with vertebrate and protostome genomes has permitted the identification of both a core set of metazoan matrix genes and vertebrate-specific innovations in the ECM. We have identified a few potential cases of de novo vertebrate ECM gene innovation, but the majority of ECM genes have resulted from duplication of pre-existing genes present in the ancestral vertebrate. In conclusion, the modern complexity we see in vertebrate ECM has come about largely by duplication and modification of pre-existing matrix molecules. Extracellular matrix genes and their processing enzymes appear to be over-represented in the vertebrate genome suggesting that these genes played an active role enabling and underpinning the evolution of vertebrates.  相似文献   

18.
The genome sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined by the shotgun approach. The genome consists of a 3.94-Mb chromosome and a 192-kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria. However, the C. acetobutylicum genome also contains a significant number of predicted operons that are shared with distantly related bacteria and archaea but not with B. subtilis. Phylogenetic analysis is compatible with the dissemination of such operons by horizontal transfer. The enzymes of the solventogenesis pathway and of the cellulosome of C. acetobutylicum comprise a new set of metabolic capacities not previously represented in the collection of complete genomes. These enzymes show a complex pattern of evolutionary affinities, emphasizing the role of lateral gene exchange in the evolution of the unique metabolic profile of the bacterium. Many of the sporulation genes identified in B. subtilis are missing in C. acetobutylicum, which suggests major differences in the sporulation process. Thus, comparative analysis reveals both significant conservation of the genome organization and pronounced differences in many systems that reflect unique adaptive strategies of the two gram-positive bacteria.  相似文献   

19.
The small genome size and gene number of ascidians makes them an ideal model system in which to screen for conserved genes that regulate the development of chordates. Expression cloning has proven to be an effective strategy for isolating genes that play a role in embryogenesis. We have taken advantage of the large size and ease of manipulation of Xenopus embryos for use as an assay system to screen for developmental regulatory genes from the ascidian Ciona intestinalis. Many invertebrate genes have been shown to function in vertebrates, providing us with precedent for our cross-species analysis. The first clone isolated from this screen is an astacin class metalloprotease. This ascidian astacin, named no va, causes a gastrulation defect in Xenopus. In C. intestinalis, no va is expressed both maternally and zygotically. The zygotic expression is seen in the mesenchyme of gastrula and neurula staged embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号