首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study explored the influence of 5 types of visual stimulation (1 control condition [no visual stimulation] and 4 experimental conditions [blank television screen; and, televised images depicting humans, inanimate movement, animate movement]) on the behaviour of 125 cats housed in a rescue shelter. Twenty-five cats were randomly assigned to one of the five conditions of visual stimulation for 3 h a day for 3 days. Each cat's behaviour was recorded every 5 min throughout each day of exposure to the visual stimuli. Cats spent relatively little of the total observation time (6.10%) looking at the television monitors. Animals exposed to the programmes depicting animate and inanimate forms of movement spent significantly more of their time looking at the monitors than those exposed to the moving images of humans or the blank screen. The amount of attention that the cats directed towards the television monitors decreased significantly across their 3 h of daily presentation, suggesting habituation. Certain components of the cats’ behaviour were influenced by visual stimulation. Animals in the animate movement condition spent significantly less time sleeping, and displayed a non-significant trend to spend more time resting, and in the exercise area of their pens, than those in the other conditions of visual stimulation. Overall, the results from this study suggest that visual stimulation in the form of two-dimensional video-tape sequences, notably that combining elements of prey items and linear movement, may hold some enrichment potential for domestic cats housed in rescue shelters. Such animals, however, may not benefit from this type of enrichment to the same degree as species with more well-developed visual systems, such as primates.  相似文献   

2.
Fine wire electrodes were surgically implanted in two regions of a snail's brain (Helix aspersa). To receive electrical stimulation of the brain, the tethered snail was required to displace the end of a rod. Self-stimulation delivered to the parietal ganglion resulted in nonrepetition of the operant response, whereas self-stimulation delivered to the mesocerebrum resulted in an increase in response frequency. In neurophysiological experiments it was found that extracellular stimulation of mesocerebrum inhibits spontaneous activity of serotonergic cells modulating avoidance reactions, and decreases synaptic input of a command cell for avoidance behaviour. These findings make possible intracellular investigations of the mechanisms of positive and negative reinforcement.  相似文献   

3.
It was demonstrated in chronic experiments on cats that stimulation of certain midbrain regions decreased or fully depressed the pain reaction evoked by dental pulp stimulation. The antinociceptive effect depending on the parameters of the brain stimulation was shown in differential change of the separate motor and vegetative and emotional - behaviour components, forming a general pain reaction. A poststimulation analgesia was revealed and the dynamic of restoration of different pain manifestations after the cessation of brain stimulation was traced. Possible mechanism of the realization of the antinociceptive effect are discussed.  相似文献   

4.
In this study, our previous results on the important relation between EEG and EPs were extended by experiments with chronically implanted and freely moving cats, which had electrodes at the acoustical cortex, inferior colliculus and reticular formation. During the experiments the frequency stabilization upon sound stimulation was shown in the frequency domain by comparison of the pre-stimulus power spectra and post-stimulus amplitude frequency characteristics. Comparative frequency domain analysis of about 75 EEG-EPograms (sample of spontaneous activities just prior to stimulation and single evoked potentials following the stimulation), which were recorded from all the brain nuclei mentioned above and from each of the 11 cats, was performed as follows: 1) Power spectra of the EEG-records prior to stimulus were evaluated. 2) Instantaneous frequency characteristics of single EPs were obtained by the Fourier transform. 3) Distribution of the amplitude maxima of the EP-frequency characteristics and the distribution of the EEG-spectral peaks were compared by plotting two types of histograms containing relevant spectral peaks before and after the stimulation. In a frequency range between 1–1000 Hz, the frequency distribution of the EP records from RF and IC were accumulated in narrow discrete frequency channels, whereas, the distribution of the spectral peaks of the EEG depicted frequency spread in broad channels. The frequency stabilization of the EP records from GEA, in the alpha frequency range, was also observed. This effect was described by a factor which we called as the Frequency Stabilization Factor. The results presented in this study showed that the frequency stabilization of the brain's electrical activity induced by sensory stimulation displayed a fluctuation leading to frequency stabilization factors between 0.95 and 5.00. The frequency stabilization and relevant power enhancement upon stimulation strongly support our contention that evoked potential results from the frequency stabilization of the spontaneous activity, triggered by stimulation.Supported by Grant No. TAG-345 of the Scientific and Technical Research Council of Turkey  相似文献   

5.
Repeated bursts of low voltage electrical stimulation of the isolated ileum of the guinea-pig gradually leads to the development and progressive intensification of the tissue basal activity, culminating in spontaneous, sudden strong contractions of the preparation, which persist for several hours after the stimulation has been discontinued. The magnitude of these alterations are determined by the parameters of the stimulation, mainly by the number of electrical stimulations, the frequency of stimulation, and the interstimulus interval. Maximal alterations are obtained with periods of stimulation of 20 Hz for 10 sec, pulses of 3.0 msec, repeated every 20 min for 15 times. Phenytoin, flunitrazepam, diazepam, phenobarbital and carbamazepine effectively inhibited the fully developed phenomenon in the tissues. The effect described in this report may be related to kindling in the brain.  相似文献   

6.
We have analyzed the spontaneous symmetry breaking and initiation of actin-based motility in keratocytes (fish epithelial cells). In stationary keratocytes, the actin network flow was inwards and radially symmetric. Immediately before motility initiation, the actin network flow increased at the prospective cell rear and reoriented in the perinuclear region, aligning with the prospective axis of movement. Changes in actin network flow at the cell front were detectable only after cell polarization. Inhibition of myosin II or Rho kinase disrupted actin network organization and flow in the perinuclear region and decreased the motility initiation frequency, whereas increasing myosin II activity with calyculin A increased the motility initiation frequency. Local stimulation of myosin activity in stationary cells by the local application of calyculin A induced directed motility initiation away from the site of stimulation. Together, these results indicate that large-scale actin-myosin network reorganization and contractility at the cell rear initiate spontaneous symmetry breaking and polarized motility of keratocytes.  相似文献   

7.
In order to study the relationships between the claustrum and motor cortex neurons both of area 4 and area 6 in the cat, an experiment was performed in which the effect of claustral stimulation on pyramidal tract neurons was investigated. Single shock electrical activation of the claustrum caused an inhibition of the spontaneous activity of the neurons, or an inhibition preceded by short activation, or no effect. These evidences lead to the conclusion that the claustrum exerts a role in movement organization.  相似文献   

8.
Coordinated swimming movements in Yungia are not dependent upon the presence of the brain. The neuromuscular mechanism necessary for spontaneous movement and swimming is complete in the body of the animal apart from the brain. Normally this mechanism is set in motion by sensory stimulation arriving by way of the brain. The latter is a region of low threshold and acts as an amplifier by sending the impulses into a great number of channels. When the head is cut off these connections with the sensorium are broken, consequently peripheral stimulation does not have its usual effect. If, however, the motor nerves are stimulated directly as by mechanical stimulation of the median anterior region, then swimming movements result. Also if the threshold of the entire nervous mechanism is lowered by phenol or by an increase in the ion ratios See PDF for Equation and See PDF for Equation then again peripheral stimulation throws the neuromuscular mechanism into activity and swimming movements result.  相似文献   

9.
Since the discovery of the nervous system's electrical excitability more than 200 years ago, neuroscientists have used electrical stimulation to manipulate brain activity in order to study its function. Microstimulation has been a valuable technique for probing neural circuitry and identifying networks of neurons that underlie perception, movement and cognition. In this review, we focus on the use of stimulation in behaving primates, an experimental system that permits causal inferences to be made about the effect of stimulation-induced activity on the resulting behaviour or neural signals elsewhere in the brain.  相似文献   

10.
Analysis of only the postsynaptic responses seems to be insufficient for studying the synaptic plasticity in learning, because they reflect not only synaptic modifications. The adequacy of brain slices application for investigation of the synaptic plasticity in learning per se has not been strictly specified. Learning processed can be adequately studied only in awake animals. However, traditional methods of field potential recording in response to stimulation of certain inputs that are well interpretable in vitro studies seem to be inadequate for in vivo testing synaptic plasticity. Single unit activity recording in pre- and postsynaptic fields during learning and direct threshold stimulation of monosynaptic inputs to a postsynaptic cell are suggested as a promising strategy for investigation of synaptic plasticity. Since the recording area is not deafferrented in a freely moving animal (as distinct from brain slices), the spontaneous activity in the neural network can interfere with responses to a testing stimulus. Computer simulation demonstrates that the interaction between spontaneous afferentation and testing stimulation can produce an illusion of synaptic modifications. Computer simulation of a neurophysiological experiment is proposed as a preliminary method for the reduction of the effect of spontaneous afferentation on the probability of the postsynaptic response.  相似文献   

11.
通常采用恒定电脉冲间隔的高频刺激(high-frequency stimulation,HFS),进行深部脑刺激治疗帕金森氏症等运动障碍疾病.为了开发适用于不同脑疾病治疗的新刺激模式,近年来脉冲间隔(inter-pulse-interval,IPI)变化的变频刺激模式受到关注.已有研究表明,即使具有相同的平均电脉冲频率,变频刺激与恒频刺激的治疗效果也不同.我们推测,变频刺激的短小IPI变化就足以改变HFS对于神经元的作用.为了验证此推测,本文在大鼠海马CA1区锥体神经元的输入轴突纤维上交替施加恒频刺激(100或133 Hz,即IPI=10 ms或7.5 ms)和随机变频刺激(100~200 Hz,即IPI=5~10 ms,平均频率为133 Hz),记录并分析刺激下游神经元群体的诱发电位,用于定量评价神经元对于恒频和变频刺激的响应.实验结果表明,持续的恒频刺激使得神经元的响应从最初的同步发放形成的群峰电位(population spike,PS)转变为非同步的动作电位发放(即单元锋电位).但是,当刺激切换为变频模式时,却又可以诱发神经元群体同步产生动作电位,重新形成PS波.并且,变频刺激诱发的PS幅值和神经元发放的同步程度可达基线的单脉冲刺激诱发波的水平.但是,PS的发生率只有脉冲刺激频率的7%左右,表明在持续的变频刺激时,多个脉冲累积的作用才能诱发这种同步的神经元发放.而且PS的出现与前导IPI的长度之间存在一定关系.神经元的轴突和突触等结构对于高频刺激的非线性响应可能是变频刺激诱发同步活动的原因.这些结果表明,变频刺激序列中短小的间隔变化可以产生与恒定间隔不同的调控作用.本文的结果对于揭示脑刺激的作用机制,促进新型刺激模式的开发及其在不同类型脑疾病治疗中的应用具有重要意义.  相似文献   

12.
Male rats implanted with chronic electrodes into the postero-lateral hypothalamic site were tested for self-stimulation behaviour. Rats exhibiting steady self-stimulation behaviour were observed during mating tests with an oestrus female. During these tests the hypothalamus of male rats was stimulated. Results show that no stimulus-bound sexual behaviour was observed. Nevertheless, correlations were found between the rewarding value of the cerebral stimulation and the specific sexual components of mating behaviour. These results are interpreted with the hypothesis of a balancing effect between the reward elicited by direct stimulation of the brain and reward acquired by the presence of an oestrus female.  相似文献   

13.
For centuries, rocking has been used to promote sleep in babies or toddlers. Recent research suggested that relaxation could play a role in facilitating the transition from waking to sleep during rocking. Breathing techniques are often used to promote relaxation. However, studies investigating head motions and body rotations showed that vestibular stimulation might elicit a vestibulo-respiratory response, leading to an increase in respiration frequency. An increase in respiration frequency would not be considered to promote relaxation in the first place. On the other hand, a coordination of respiration to rhythmic vestibular stimulation has been observed. Therefore, this study aimed to investigate the effect of different movement frequencies and amplitudes on respiration frequency. Furthermore, we tested whether subjects adapt their respiration to movement frequencies below their spontaneous respiration frequency at rest, which could be beneficial for relaxation. Twenty-one healthy subjects (24–42 years, 12 males) were investigated using an actuated bed, moving along a lateral translation. Following movement frequencies were applied: +30%, +15%, -15%, and -30% of subjects’ rest respiration frequency during baseline (no movement). Furthermore, two different movement amplitudes were tested (Amplitudes: 15 cm, 7.5 cm; movement frequency: 0.3 Hz). In addition, five subjects (25–28 years, 2 males) were stimulated with their individual rest respiration frequency. Rocking movements along a lateral translation caused a vestibulo-respiratory adaptation leading to an increase in respiration frequency. The increase was independent of the applied movement frequencies or amplitudes but did not occur when stimulating with subjects’ rest respiration frequency. Furthermore, no synchronization of the respiration frequency to the movement frequency was observed. In particular, subjects did not lower their respiration frequency below their resting frequency. Hence, it was not feasible to influence respiration in a manner that might be considered beneficial for relaxation.  相似文献   

14.
The medial septal area of conscious rats was stimulated through previously implanted electrodes at a frequency of 7.7 Hz for 20 min each day for 7 days to evoke rhythmic slow activity in CA1 at a similar frequency to spontaneous theta. Two weeks later in the anaesthetized rats the effects of a single subcutaneous injection of nicotine (0.4 mg x kg(-1)) on fEPSPs, evoked in the dentate gyrus by separate stimulation of the MPP and LPP, were studied and compared with those obtained in controls. Nicotine increased the firing of locus coeruleus neurones and the slope of the fEPSPs evoked by LPP stimulation, but not by MPP stimulation. Prior theta driving considerably increased the effect of nicotine on the responses evoked by stimulation of the MPP and abolished the nicotine-induced potentiation of the responses evoked by stimulation of the LPP. The results are attributed to theta driving increasing the amount of noradrenaline released by nicotine and to noradrenaline producing a beta-adrenoceptor long-lasting potentiation at the medial perforant path synapse and a long-lasting depression at the lateral perforant path synapse.  相似文献   

15.
Is the alpha rhythm a control parameter for brain responses?   总被引:4,自引:0,他引:4  
 The main goal of the present study is to develop a conceptual analysis of alpha response in the brain based on single sweep evaluation. A new method was employed to estimate a set of single-sweep parameters and quantify the oscillatory behaviour of single, electroencephalograph (EEG) sweeps. It was aimed to demonstrate that brain alpha responses are governed by spontaneous alpha activity and to validate the principle of brain response excitability. Because the spontaneous alpha activity depends on both the topology of recording and the subject’s age, topology and age models were used. Spontaneous and evoked alpha activity were recorded at frontal and occipital sites in three groups of subjects: 3-year-old children, young adults and middle-aged subjects. Amplitude, enhancement and phase-locking of single alpha responses to visual stimuli were analysed. Major results showed that: (1) visual alpha responses could be recorded only if the alpha rhythm was developed in the spontaneous EEG independent of electrode location; (2) middle-aged adults showed more expressed frontal spontaneous alpha activity in comparison with young adults; (3) accordingly, alpha responses with higher amplitude and stronger phase-locking were produced over the frontal brain area in middleaged than young adults. These results validate the principle of brain response excitability and demonstrate that a shift towards frontal brain areas for both the spontaneous and evoked alpha activity occurs with increasing age in adults. The results are discussed in the context of the diffuse and distributed alpha system of the brain. Age-dependent changes in frontal alpha activity are suggested to be related to frontal brain functioning during aging. Received: 6 November 1995 / Accepted in revised form: 13 March 1997  相似文献   

16.
Thirty adult rats were trained in a reaching behaviour schedule, after which bipolar steel electrodes were bilaterally implanted into the ventromedial hypothalamus (VMH), lateral hypothalamic area (LHA) or basolateral amygdala (BLA). On subsequent training sessions, these structures were electrically stimulated employing a movement-synchronized stimulation design. The results show that VMH stimulation produces aversive effects: the animals go away from the feeder after the first stimulus. Reaching impairment resulting from LHA or BLA stimulation mainly affected the grasping phase; additionally, repetition of movement sequence was observed. The results are discussed in the framework of Kornhuber's concept of preprogrammed ballistic movements.  相似文献   

17.
Magnetic stimulation as used in studies of the human brain may not merely disrupt cognitive functions, but also enhance them. The direction of the effect may depend on the frequency of stimulation as much as the area of the brain that is stimulated.  相似文献   

18.
Animals decerebrated at the precollicular-premammillary body level exhibit spontaneous locomotion without any artificial stimulation. Our laboratory reported that the cardiovascular and autonomic responses at the onset of spontaneous locomotor events are evoked by central command, generated from the caudal diencephalon and the brain stem (Matsukawa K, Murata J, and Wada T. Am J Physiol Heart Circ Physiol 275: H1115-H1121, 1998). In this study, we examined whether central command and/or a reflex resulting from muscle afferents modulates arterial baroreflex function using a decerebrate cat model. The baroreflex was evoked by stimulating the aortic depressor nerve (ADN) at the onset of spontaneous muscle contraction (to test the possible influence of central command) and during electrically evoked contraction or passive stretch (to test the possible influence of the muscle reflex). When the ADN was stimulated at rest, heart rate and arterial blood pressure decreased by 40 +/- 2 beats/min and 11 +/- 1 mmHg, respectively. The baroreflex bradycardia was attenuated to 55 +/- 4% at the onset of spontaneous contraction. The attenuating effect on the baroreflex bradycardia was not observed at the onset and middle of electrically evoked contraction or passive stretch. The depressor response to ADN stimulation was identical among resting and any muscle interventions. The inhibition of the baroreflex bradycardia during spontaneous contraction was seen after beta-adrenergic blockade but abolished by muscarinic blockade, suggesting that the bradycardia is mainly evoked through cardiac vagal outflow. We conclude that central command, produced within the caudal diencephalon and the brain stem, selectively inhibits the cardiac component, but not the vasomotor component, of the aortic baroreflex at the onset of spontaneous exercise.  相似文献   

19.
The effect of neuropeptides (TSKYR, TSKY and DY) and neurotransmitters (serotonin and noradrenaline) on the activity of medial septum (MS) neurons from the brain of summer wakening ground squirrels (WGS), hibernating ground squirrels (HGS), and hibernating ground squirrels with the undercut septum (UHGS) was studied. It was shown that in HGS, the neuropeptides were substantially more effective in modulating the spontaneous activity of MS neurons than in WGS. The undercutting of MS led to the disappearance of the increased responsiveness to the neuropeptides: in UHGS, neuropeptide-induced changes in the spontaneous activity became nearly identical to those in WGS. The decrease in MS responsiveness in UHGS is due mainly to pacemaker neurons, which cease to respond to the peptides. It was shown that the neuropeptides have a dual effect: they change the level of spontaneous activity through direct modulation of pacemaker potential and control responses to electrical stimulation by modulating the synaptic transmission. Contrary to neuropeptides, neurotransmitters were highly effective in neurons of all groups of animals. Presumably, the enhanced excitability of MS during hibernation, which is necessary for performing the 'sentry post' function, is formed under the influence of the preopticohypothalamic area, and this influence is mediated by peptides.  相似文献   

20.
Pregnenolone, dehydroepiandrosterone and progesterone were measured in specific areas of the brain and in the retina of young adult male rats exposed to the scent or to the scent and view of young cycling females and compared to the levels obtained in males similarly exposed to other males (control). All the steroid values observed were much higher than those found in plasma, varied considerably from one area to another and responded sometimes in opposite directions to stimulation of young adult males by the scent or by the scent and view of cycling females. In male rats exposed to the scent of young cycling females pregnenolone decreased significantly only in the olfactory bulb in comparison with the controls. There were no significant changes in dehydroepiandrosterone or progesterone in this case. When male rats were exposed to the scent and view of female rats, pregnenolone again decreased significantly in the olfactory bulb while dehydroepiandrosterone increased significantly in the olfactory bulb and the retina and progesterone decreased significantly in the hypothalamus, amygdala and parietal cortex. These results are discussed in relation with a possible new role for certain steroids in neuroregulatory mechanisms related to behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号