首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During amphibian gastrulation, the anterior endomesoderm is thought to move forward along the inner surface of the blastocoel roof toward the animal pole where it comes into physical contact with the anterior-most portion of the prospective head neuroectoderm (PHN), and it is also believed that this physical interaction occurs during the mid-gastrula stage. However, using Xenopus embryos we found that the interaction between the anterior endomesoderm and the PHN occurs as early as stage 10.25 and the blastocoel roof ectoderm at this stage contributed only to the epidermal tissue. We also found that once the interaction was established, these tissues continued to associate in register and ultimately became the head structures. From these findings, we propose a new model of Xenopus gastrulation. The anterior endomesoderm migrates only a short distance on the inner surface of the blastocoel roof during very early stages of gastrulation (by stage 10.25). Then, axial mesoderm formation occurs, beginning dorsally (anterior) and progressing ventrally (posterior) to complete gastrulation. This new view of Xenopus gastrulation makes it possible to directly compare vertebrate gastrulation movements.  相似文献   

2.
M S Saha  R M Grainger 《Neuron》1992,8(6):1003-1014
The process by which the vertebrate central nervous system acquires its regional properties remains a central problem in developmental biology. It is generally argued that at early gastrula stages the dorsal mesoderm possesses precise anterior-posterior positional information, which is subsequently imparted to the overlying ectoderm. However, using regionally specific gene probes to monitor regional responses in Xenopus embryos, we find that anterior-posterior properties are not fixed until early neurula stages. During gastrulation the regional inducing capacities of the dorsal mesoderm as well as the regional responses of the presumptive neural ectoderm are activated along the entire anterior-posterior axis when these properties are assayed in recombinant and explant experiments, respectively. Restriction of regional inducing capacity in the mesoderm and responsiveness in the neural ectoderm occur only at neural plate stages.  相似文献   

3.
The 58K protein is a peripheral membrane protein enriched in the acetylcholine receptor (AChR)-rich postsynaptic membrane of Torpedo electric organ. Because of its coexistence with AChRs in the postsynaptic membrane in both electrocytes and skeletal muscle, it is thought to be involved in the formation and maintenance of AChR clusters. Using an mAb against the 58K protein of Torpedo electric organ, we have identified a single protein band in SDS-PAGE analysis of Xenopus myotomal muscle with an apparent molecular mass of 48 kD. With this antibody, the distribution of this protein was examined in the myotomal muscle fibers with immunofluorescence techniques. We found that the 48K protein is concentrated at the myotendinous junctions (MTJs) of these muscle fibers. The MTJ is also enriched in talin and vinculin. By double labeling muscle fibers with antibodies against talin and the 48K protein, these two proteins were found to colocalize at the membrane invaginations of the MTJ. In cultured myotomal muscle cells, the 48K protein and talin are also colocalized at sites of membrane-myofibril interaction. The 48K protein is, however, not found at focal adhesion sites in nonmuscle cells, which are enriched in talin. These data suggest that the 48K protein is specifically involved in the interaction of myofibrillar actin filaments with the plasma membrane at the MTJ. In addition to the MTJ localization, 48K protein is also present at AChR clusters both in vivo and in vitro. Thus, this protein is shared by both the MTJ and the neuromuscular junction.  相似文献   

4.
5.
The expression of the Ca2+-dependent epithelial cell adhesion molecule E-cadherin (also known as uvomorulin and L-CAM) in the early stages of embryonic development of Xenopus laevis was examined. E-Cadherin was identified in the Xenopus A6 epithelial cell line by antibody cross-reactivity and several biochemical characteristics. Four independent mAbs were generated against purified Xenopus E-cadherin. All four mAbs recognized the same polypeptides in A6 cells, adult epithelial tissues, and embryos. These mAbs inhibited the formation of cell contacts between A6 cells and stained the basolateral plasma membranes of A6 cells, hepatocytes, and alveolar epithelial cells. The time of E-cadherin expression in early Xenopus embryos was determined by immunoblotting. Unlike its expression in early mouse embryos, E-cadherin was not present in the eggs or early blastula of Xenopus laevis. These findings indicate that a different Ca2+-dependent cell adhesion molecule, perhaps another member of the cadherin gene family, is responsible for the Ca2+-dependent adhesion between cleavage stage Xenopus blastomeres. Detectable accumulation of E-cadherin started just before gastrulation at stage 9 1/2 and increased rapidly up to the end of gastrulation at stage 15. In stage 15 embryos, specific immunofluorescence staining of E-cadherin was discernible only in ectoderm, but not in mesoderm and endoderm. The ectoderm at this stage consists of two cell layers. The outer cell layer of ectoderm was stained intensely, and staining was localized to the basolateral plasma membrane of these cells. Lower levels of staining were observed in the inner cell layer of ectoderm. The coincidence of E-cadherin expression with the process of gastrulation and its restriction to the ectoderm indicate that it may play a role in the morphogenetic movements of gastrulation and resulting segregation of embryonic germ layers.  相似文献   

6.
Spatial and temporal pattern and quantities of nicks in nuclear DNA during gastrulation and neurulation was studied using nick-translation in sections of Xenopus laevis embryos. Specific changes in the number of nicks in different mesoderm and ectoderm regions were detected during embryogenesis. Dorso-ventral gradient of nuclear labelling was observed in mesoderm and inner ectoderm layer of early and middle gastrula. The gradient was inverted during transition from gastrula to neurula. At the same time dorso-ventral (in mesoderm) and ventro-dorsal (in outer ectoderm layer) gradients of nuclear labelling were increased. The intensity of nuclear labelling in all parts of embryo as a whole was remarkably higher during neurulation as compared with gastrulation. Dorso-ventral gradient of nuclear labelling was observed in mesoderm and ectoderm during neurulation. A connection between the nicks and differentiation status of the cells during early embryogenesis in amphibians is suggested.  相似文献   

7.
During the formation of the neuromuscular junction, the nerve induces the clustering of acetylcholine receptors (AChR) in the postsynaptic membrane. This process can be mimicked by treating cultured Xenopus myotomal muscle cells with basic polypeptide-coated latex beads. Using this bead-muscle coculture system, we examined the role of lateral migration of AChRs in the formation of the clusters. First, we studied the contributions of the preexisting and newly inserted AChRs. After the cluster formation was triggered by the addition of the beads, preexisting receptors were immediately recruited to the bead-muscle contacts and they remained to be the dominant contributor during the first 24 hr. New AChRs, which were inserted after the addition of the beads, appeared at the clusters after a 4-hr delay and, thereafter, there was a steady increase in their contribution. After 24-48 hr, newly inserted AChRs could be detected at the bead-induced clusters to the same extent as the preexisting AChRs. During this period, new receptors were continuously inserted into the plasma membrane, but there was no evidence of a local insertion at sites of new cluster formation. Concanavalin A (Con A) at a concentration of 100 micrograms/ml caused a fivefold decrease in the fraction of mobile AChRs and a large decrease in their diffusion coefficient. Pretreatment of cells with Con A suppressed clustering of preexisting AChRs, but left intact the contribution of the mobile newly inserted AChRs. Succinyl Con A, the divalent derivative of Con A which affected the mobility to a much less extent than Con A, had little effect on the clustering process. These results show that the formation of AChR clusters in Xenopus is mediated by lateral migration of AChRs within the plasma membrane and are consistent with the diffusion-trap hypothesis, which depicts freely diffusing AChR aggregating at the bead-muscle contacts where they bind to other localized molecular specializations induced by the beads.  相似文献   

8.
Dystroglycan is a member of the transmembrane dystrophin glycoprotein complex in muscle that binds to the synapse-organizing molecule agrin. Dystroglycan binding and AChR aggregation are mediated by two separate domains of agrin. To test whether dystroglycan plays a role in receptor aggregation at the neuromuscular junction, we overexpressed it by injecting rabbit dystroglycan RNA into one- or two-celled Xenopus embryos. We measured AChR aggregation in myotomes by labeling them with rhodamine-alpha-bungarotoxin followed by confocal microscopy and image analysis. Dystroglycan overexpression decreased AChR aggregation at the neuromuscular junction. This result is consistent with dystroglycan competition for agrin without signaling AChR aggregation. It also supports the hypothesis that dystroglycan is not the myotube-associated specificity component, (MASC) a putative coreceptor needed for agrin to activate muscle-specific kinase (MuSK) and signal AChR aggregation. Dystroglycan was distributed along the surface of muscle membranes, but was concentrated at the ends of myotomes, where AChRs normally aggregate at synapses. Overexpressed dystroglycan altered AChR aggregation in a rostral-caudal gradient, consistent with the sequential development of neuromuscular synapses along the embryo. Increasing concentrations of dystroglycan RNA did not further decrease AChR aggregation, but decreased embryo survival. Development often stopped during gastrulation, suggesting an essential, nonsynaptic role of dystroglycan during this early period of development.  相似文献   

9.
Neural induction is known to involve an interaction of ectoderm with dorsal mesoderm during gastrulation, but several kinds of studies have argued that competent ectoderm can also be neutralized via an interaction with previously neuralized tissue, a process termed homeogenetic neural induction. Although homeogenetic neural induction has been proposed to play an important role in the normal induction of neural tissue, this process has not been subjected to detailed study using tissue recombinants and molecular markers. We have examined the question of homeogenetic neural induction in Xenopus embryos, both in transplant and recombinant experiments, using the expression of two neural antigens to assay the response. When ectoderm that is competent to be neuralized is transplanted to the region adjacent to the neural plate of early neurula embryos, it forms neural tissue, as assayed by staining with antibodies against the neural cell adhesion molecule, N-CAM. Transplants to the ventral region, far from the neural plate, do not express N-CAM, indicating that neuralization is not occurring as a result of the transplantation procedure itself. Because this response might be occurring as a result of interactions of ectoderm with either adjacent neural plate tissue, or with underlying dorsolateral mesoderm, recombinant experiments were performed to determine the source of the neuralizing signal. Ectoderm cultured in combination with neural plate tissue alone expresses neural markers, while ectoderm cultured in combination with dorsolateral mesoderm does not. We conclude that neural tissue can homeogenetically induce competent ectoderm to form neural tissue and argue that this induction occurs via planar signaling within the ectoderm, a mechanism that, in normal development, may be involved in interactions within presumptive neural ectoderm or in specifying structures that lie near the neural plate.  相似文献   

10.
The role of motor innervation in controlling the development of acetylcholine receptor (AChR) channel open time was tested by examining synaptic current durations in transplanted muscles of Xenopus tadpoles. The presumptive lower jaw region, which gives rise to the interhyoideus muscle, was transplanted to the tail, overlying the myotomal muscle cells. The transplanted muscles became innervated, presumably by spinal nerves which normally innervate myotomal muscle. Despite development in the presence of foreign innervation, synaptic currents in the transplanted interhyoideus were predominantly long in duration and resembled those in the normally innervated interhyoideus. They did not resemble those in the myotomal muscle, where synaptic currents are brief. The apparent lack of neural influence on development of AChR function in muscle contrasts with the evidence for presynaptic control of AChR open time in frog sympathetic ganglia. This may reflect a fundamental difference between nerve and muscle in the regulation of postsynaptic function.  相似文献   

11.
After completion of gastrulation, typical vertebrate embryos consist of three cell sheets, called germ layers. The outer layer, the ectoderm, which produces the cells of the epidermis and the nervous system; the inner layer, the endoderm, producing the lining of the digestive tube and its associated organs (pancreas, liver, lungs etc.) and the middle layer, the mesoderm, which gives rise to several organs (heart, kidney, gonads), connective tissues (bone, muscles, tendons, blood vessels), and blood cells. The formation of the germ layers is one of the earliest embryonic events to subdivide multicellular embryos into a few compartments. In Xenopus laevis, the spatial domains of three germ layers are largely separated along the animal-vegetal axis even before gastrulation; ectoderm in the animal pole region; mesoderm in the equatorial region and endoderm in the vegetal pole region. In this review, we summarise the recent advances in our understanding of the formation of the germ layers in Xenopus laevis.  相似文献   

12.
13.
We used transient transfection in COS cells to compare the properties of mouse muscle acetylcholine receptors (AChRs) containing alpha, beta, delta, and either gamma or epsilon subunits. gamma- and epsilon-AChRs had identical association rates for binding 125I-alpha-bungarotoxin, and identical curves for inhibition of toxin binding by d-tubocurarine, but epsilon-AChRs had a significantly longer half-time of turnover in the membrane than gamma-AChRs. A myasthenic serum specific for the embryonic form of the AChR reduced toxin binding to gamma-, but not epsilon-AChRs. The gamma-AChRs had channel characteristics of embryonic AChRs, whereas the major class of epsilon-AChR channels had the characteristics of adult AChRs. Two minor channel classes with smaller conductances were also seen with epsilon-AChR. Thus, some, but not all, of the differences between AChRs at adult endplates and those in the extrasynaptic membrane can be explained by the difference in subunit composition of gamma- and epsilon-AChRs.  相似文献   

14.
During amphibian gastrulation, the embryo is transformed by the combined actions of several different tissues. Paradoxically, many of these morphogenetic processes can occur autonomously in tissue explants, yet the tissues in intact embryos must interact and be coordinated with one another in order to accomplish the major goals of gastrulation: closure of the blastopore to bring the endoderm and mesoderm fully inside the ectoderm, and generation of the archenteron. Here, we present high-resolution 3D digital datasets of frog gastrulae, and morphometrics that allow simultaneous assessment of the progress of convergent extension, blastopore closure and archenteron formation in a single embryo. To examine how the diverse morphogenetic engines work together to accomplish gastrulation, we combined these tools with time-lapse analysis of gastrulation, and examined both wild-type embryos and embryos in which gastrulation was disrupted by the manipulation of Dishevelled (Xdsh) signaling. Remarkably, although inhibition of Xdsh signaling disrupted both convergent extension and blastopore closure, mesendoderm internalization proceeded very effectively in these embryos. In addition, much of archenteron elongation was found to be independent of Xdsh signaling, especially during the second half of gastrulation. Finally, even in normal embryos, we found a surprising degree of dissociability between the various morphogenetic processes that occur during gastrulation. Together, these data highlight the central role of PCP signaling in governing distinct events of Xenopus gastrulation, and suggest that the loose relationship between morphogenetic processes may have facilitated the evolution of the wide variety of gastrulation mechanisms seen in different amphibian species.  相似文献   

15.
16.
BMP-4 has been implicated in the patterning of the Dorsal-Ventral axis of mesoderm and ectoderm. In this study, we describe the posteriorizing effect of BMP-4 on the neural inducing ability of dorsal mesoderm (dorsal lip region) in Xenopus gastrulae. Dorsal lip explants dissected from stage 10.25 embryos retained anterior inducing ability when precultured for 6 hrs until sibling embryos reach stage 12. When the dorsal lips from stage 10.25 embryos were treated with a range of BMP-4 concentrations, posterior tissues were induced in adjacent ectoderm in a dose-dependent manner. Thus activin-treated explants able to act as head inducers can also induce posterior structures in the presence of BMP-4. To investigate whether BMP-4 directly affects the inducing ability of dorsal mesoderm, we blocked the BMP-4 signaling pathway by injection of mRNA encoding a truncated form of the BMP-4 receptor (tBR) mRNA. Under these conditions, activin-treated explants induced anterior tissues following BMP-4 treatment. Taken together, these results indicate that BMP-4 may affect the head inducing ability of dorsal mesoderm and confer trunk-tail inducing ability during Xenopus gastrulation.  相似文献   

17.
In this article, we describe some of the morphogenetic movements reshaping the Xenopus laevis embryo during gastrulation. We have learned a great deal about these movements in recent years through advances made in explant culture techniques. Here, we will focus on involution, the process by which mesoderm is internalized and placed in between ectoderm and endoderm. Our aim is to present our current view of how involution takes place in the dorsal involuting marginal zone of the Xenopus embryos.  相似文献   

18.
Agrin is an extracellular synaptic protein that organizes the postsynaptic apparatus, including acetylcholine receptors (AChRs), of the neuromuscular junction. The COOH-terminal portion of agrin has full AChR-aggregating activity in culture, and includes three globular domains, G1, G2, and G3. Portions of the agrin protein containing these domains bind to different cell surface proteins of muscle cells, including alpha-dystroglycan (G1-G2) and heparan sulfate proteoglycans (G2), whereas the G3 domain is sufficient to aggregate AChRs. We sought to determine whether the G1 and G2 domains of agrin potentiate agrin activity in vivo, as they do in culture. Fragments from the COOH-terminal of a neuronal agrin isoform (4,8) containing G3, both G2 and G3, or all three G domains were overexpressed in Xenopus embryos during neuromuscular synapse formation in myotomal muscles. RNA encoding these fragments of rat agrin was injected into one-cell embryos. All three fragments increased the ectopic aggregation of AChRs in noninnervated regions near the center of myotomes. Surprisingly, ectopic aggregation was more pronounced after overexpression of the smallest fragment, which lacks the heparin- and alpha-dystroglycan-binding domains. Synaptic AChR aggregation was decreased in embryos overexpressing the fragments, suggesting a competition between endogenous agrin secreted by nerve terminals and exogenous agrin fragments secreted by muscle cells. These results suggest that binding of the larger agrin fragments to alpha-dystroglycan and/or heparan sulfate proteoglycans may sequester the fragments and inhibit their activity in embryonic muscle. These intermolecular interactions may regulate agrin activity and differentiation of the neuromuscular junction in vivo.  相似文献   

19.
Studies of morphogenesis in early Xenopus embryos have focused primarily on gastrulation and neurulation. Immediately following these stages is another period of intense morphogenetic activity, the neurula-to-tailbud transition. During this period the embryo is transformed from the spherical shape of the early stages into the long, thin shape of the tailbud stages. While gastrulation and neurulation depend largely on active cell rearrangement and cell shape changes in dorsal tissues, we find that the neurula-to-tailbud transition depends in part on activities of ventral cells. Ventral explants of neurula lengthen autonomously as much as the ventral sides of intact embryos, while dorsal explants lengthen less than the dorsal sides of intact embryos. Analyses of cell division, cell shapes, and cell rearrangement by transplantation of labeled cells and by time lapse recordings in live intact embryos concur that cell rearrangements in ventral mesoderm and ectoderm contribute to the autonomous anterior-posterior axis lengthening of ventral explants between neurula and tailbud stages.  相似文献   

20.
Levamisole is an anthelmintic agent that exerts its therapeutic effect by acting as a full agonist of the nicotinic receptor (AChR) of nematode muscle. Its action at the mammalian muscle AChR has not been elucidated to date despite its wide use as an anthelmintic in humans and cattle. By single channel and macroscopic current recordings, we investigated the interaction of levamisole with the mammalian muscle AChR. Levamisole activates mammalian AChRs. However, single channel openings are briefer than those activated by acetylcholine (ACh) and do not appear in clusters at high concentrations. The peak current induced by levamisole is about 3% that activated by ACh. Thus, the anthelmintic acts as a weak agonist of the mammalian AChR. Levamisole also produces open channel blockade of the AChR. The apparent affinity for block (190 microm at -70 mV) is similar to that of the nematode AChR, suggesting that differences in channel activation kinetics govern the different sensitivity of nematode and mammalian muscle to anthelmintics. To identify the structural basis of this different sensitivity, we performed mutagenesis targeting residues in the alpha subunit that differ between vertebrates and nematodes. The replacement of the conserved alphaGly-153 with the homologous glutamic acid of nematode AChR significantly increases the efficacy of levamisole to activate channels. Channel activity takes place in clusters having two different kinetic modes. The kinetics of the high open probability mode are almost identical when the agonist is ACh or levamisole. It is concluded that alphaGly-153 is involved in the low efficacy of levamisole to activate mammalian muscle AChRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号