首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexes of the estrogen -receptor with estradiol and 8-isoestradiol were comparatively analyzed. The computations of ligand–receptor complexes, carried out using the FLEXX program, allowed us to propose a model for the binding of the analogues of 8-isoestradiol. It was found that rings Cand D of estradiol and 8-isoestradiol are similarly arranged in the ligand-binding pocket and coincide upon the superposition of the corresponding ligand–receptor complexes, whereas rings A and B do not coincide. The oxygen functions in position 17 of the estradiol analogues of both series coincide upon superposition, whereas the phenol 3-hydroxyl groups are 0.05 Å apart. A comparison of the predicted biological properties of modified estradiol analogues of the natural and 8-iso-series with the available experimental data revealed their similarity. Synthetic 2-acetyl analogues of 8-isoestrogens were found to have no uterotropic activity, which is also consistent with the proposed model.  相似文献   

2.
Recently, the scanning force microscope (SFM) has been widely used for direct monitoring of specific interactions between biologically active molecules. Such studies have employed the SFM liquid-cell setup, which allows measurements to be made in the native environment with force resolution down to a tenth of a picoNewton. In this study, the ligand–receptor strength of monoclonal anti-human prostatic acid phosphatase and prostatic acid phosphatase, representing an antigen–antibody system with a single type of interaction, was determined. Then, the interaction force occurring between concanavalin A and the carbohydrate component of the glycoproteins arylsulfatase A and carboxypeptidase Y was measured. High mannose-type glycans were sought on the human prostate carcinoma cell surface. Application of an analysis based on the Poisson distribution of the number of bonds formed in all these measured systems allowed the strength of the molecular interaction to be calculated. The values of the force acting between two single molecules were 530±25, 790±32, and 940±39 pN between prostatic acid phosphatase and monoclonal anti-human prostatic acid phosphatase, between concanavalin A and arylsulfatase A, and between concanavalin A and carboxypeptidase Y, respectively. The value calculated from data collected for the force between concanavalin A and mannose-containing ligands present on the surface of human prostate carcinoma cells was smaller, 116±17 pN. The different values of the binding force between concanavalin A and mannose-containing ligands were attributed to the structural changes of the carbohydrate components.  相似文献   

3.
Fluid supported lipid bilayers provide an excellent platform for studying multivalent protein–ligand interactions because the two-dimensional fluidity of the membrane allows for lateral rearrangement of ligands in order to optimize binding. Our laboratory has combined supported lipid bilayer-coated microfluidic platforms with total internal reflection fluorescence microscopy (TIRFM) to obtain equilibrium dissociation constant (KD) data for these systems. This high throughput, on-chip approach provides highly accurate thermodynamic information about multivalent binding events while requiring only very small sample volumes. Herein, we review some of the most salient findings from these studies. In particular, increasing ligand density on the membrane surface can provide a modest enhancement or attenuation of ligand–receptor binding depending upon whether the surface ligands interact strongly with each other. Such effects, however, lead to little more than one order of magnitude change in the apparent KD values. On the other hand, the lipophilicity and presentation of lipid bilayer-conjugated ligands can have a much greater impact. Indeed, changing the way a particular ligand is conjugated to the membrane can alter the apparent KD value by at least three orders of magnitude. Such a result speaks strongly to the role of ligand availability for multivalent ligand–receptor binding.  相似文献   

4.
The study of the binding of estradiol B-nor-8-isonalogues to estrogen receptors from the rat uterus helped create the proposed model of the corresponding ligand–receptor complexes. The use of this model ensured the choice of such micromodifications in this steroid group that sharply decreased their hormonal activity. By the example of 16,16-dimethyl-D-homo-B-nor-8-isoestrone, we demonstrated the possibility of the synthesis of the estrogen analogues devoid of uterotropic activity but retaining immunosuppressive activity.  相似文献   

5.
Novel fluorescence approaches to investigate ligand recognition and structure of G protein-coupled receptors in native membranes have been developed. These methods combine the biosynthetic incorporation of unnatural fluorescent amino acids at known sites in receptors with the technique of fluorescence energy transfer for distance measurement. This permits one to fix the ligand in space and to define the structure of the receptor in a model of ligand–receptor interactions. Subdomains of ligand binding sites on NK1 and NK2 receptors were also characterized using environment-sensitive fluorophores and the techniques of collisional quenching and anisotropy. Antagonists and agonists have different binding sites on NK1 and NK2.  相似文献   

6.
Herceptin is a monoclonal antibody against HER2, which is a member of the epidermal growth factor receptor (ErbB) family and is overexpressed in many cancers. In this work, we have applied single-molecule force spectroscopy to study the effect of Herceptin on HER2 modulated ligand–receptor interaction for ErbB signaling in living cells. Heregulin β1 (HRG), the specific ligand of HER3, was used for HER2 activation as HER3 is the preferable dimerization partner of HER2 and HER3/HER2 is the most representative heterodimer found in cancer. Our results demonstrated a more stable binding of HRG to the cells co-expressing HER3 and HER2 than those expressing HER3 alone. Moreover, the binding force of Herceptin and HER2 is as strong as that of HRG and HER3/HER2. With the addition of Herceptin, the binding strength of HRG to the cells co-expressing HER3 and HER2 decreased. The presence of Herceptin changed the dynamic force spectrum of HRG-HER3/HER2 to that similar to HRG-HER3. Therefore, the enhancement in HRG-HER3 binding after recruiting HER2 was inhibited by Herceptin. The method offers a new approach to study the molecular mechanism of Herceptin anti-cancer effect.  相似文献   

7.
Recognition of cell-surface sialyldisaccharides by influenza A hemagglutinin (HA) triggers the infection process of influenza. The changes in glycosidic torsional linkage and the receptor conformations may alter the binding specificity of HAs to the sialylglycans. In this study, 10-ns molecular dynamics simulations were carried out to examine the structural and dynamic behavior of the HAs bound with sialyldisaccharides Neu5Acα(2–3)Gal (N23G) and Neu5Acα(2–6)Gal (N26G). The analysis of the glycosidic torsional angles and the pair interaction energy between the receptor and the interacting residues of the binding site reveal that N23G has two binding modes for H1 and H5 and a single binding mode for H3 and H9. For N26G, H1 and H3 has two binding modes, and H5 and H9 has a single binding mode. The direct and water-mediated hydrogen bonding interactions between the receptors and HAs play dominant roles in the structural stabilization of the complexes. It is concluded from pair interaction energy and Molecular Mechanic-Poisson-Boltzmann Surface Area calculations that N26G is a better receptor for H1 when compared with N23G. N23G is a better receptor for H5 when compared with N26G. However, H3 and H9 can recognize N23G and N26G in equal binding specificity due to the marginal energy difference (≈2.5 kcal/mol). The order of binding specificity of N23G is H3 > H5 > H9 > H1 and N26G is H1 > H3 > H5 > H9, respectively. The proposed conformational models will be helpful in designing inhibitors for influenza virus.  相似文献   

8.
The receptor binding to interleukin (IL)-13 is composed of the IL-13 receptor α1 chain (IL-13Rα1) and the IL-4 receptor α chain (IL-4Rα). In order to investigate the interaction of IL-13 with IL-13Rα1 and IL-4Rα, the DNA fragments coding the extracellular regions of human IL-13Rα1 and the IL-4Rα (containing a cytokine receptor homologous region) were fused with mouse Fc and expressed by a silkworm–baculovirus system. The expressed receptors were successfully purified by affinity chromatography using protein A, and the Fc region was removed by thrombin digestion. After further purification with anion-exchange chromatography, these receptors were used to investigate the ligand–receptor interaction. Size exclusion chromatography and SPR analysis revealed that mixture of IL-13 and IL-13Rα1 showed predominant affinity to IL-4Rα, although neither detectable affinity of IL-13 nor IL-13Rα1 was observed against IL-4Rα. Combining these data with the moderate affinity of IL-13 to IL-13Rα1, this indicates that IL-13 first binds to IL-13Rα1 and recruits consequently to IL-4R.  相似文献   

9.
Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG)·d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand–solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand–DNA binding.  相似文献   

10.
Until now, the access of ligands into the binding pocket of a G-protein coupled receptor has scarcely been studied using molecular-modeling techniques because of the lack of sufficient algorithms. Neither with Monte-Carlo- nor with Molecular Dynamics Simulations can the penetration of a ligand into the binding pocket of a receptor be calculated because of the excessive amount of computing time needed. Therefore, a new algorithm LigPath for approximate calculation of a ligand’s pathway into the binding pocket has been developed. This new algorithm is based on a linkage of directional guiding of the ligand, Monte-Carlo-Search and minimization. In order to evaluate the performance of the algorithm, the guinea-pig histamine H1 receptor was investigated in combination with one of its potent agonists, histaprodifen, which is proposed to bind in a pocket deep between the transmembrane helices of the receptor. Our calculations show that the amino acids Tyr194, Phe193, Phe436 and Phe433 guide the positively charged histaprodifen from the extracellular part of the receptor into the binding pocket.  相似文献   

11.
A new method is proposed for docking ligands into proteins in cases where an NMR-determined solution structure of a related complex is available. The method uses a set of experimentally determined values for protein–ligand, ligand–ligand, and protein–protein restraints for residues in or near to the binding site, combined with a set of protein–protein restraints involving all the other residues which is taken from the list of restraints previously used to generate the reference structure of a related complex. This approach differs from ordinary docking methods where the calculation uses fixed atomic coordinates from the reference structure rather than the restraints used to determine the reference structure. The binding site residues influenced by replacing the reference ligand by the new ligand were determined by monitoring differences in 1H chemical shifts. The method has been validated by showing the excellent agreement between structures of L. casei dihydrofolate reductase.trimetrexate calculated by conventional methods using a full experimentally determined set of restraints and those using this new restraint docking method based on an L. casei dihydrofolate reductase.methotrexate reference structure.  相似文献   

12.
The binding characteristics of the peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) to plasma membranes of basal nuclei of the rat forebrain and the dynamics of its degradation during its incubation with these membranes were studied. Binding of the homogeneously labeled [G-3H]Semax was shown to be time-dependent, specific, and reversible. Specific binding of the heptapeptide depended on calcium ions and was characterized by the dissociation constant of the ligand–receptor complex K d 2.41 ± 1.02 × 10–9 M and by the concentration of binding sites B max 33.5 ± 7.9 × 10–15 mol/mg of protein. A method of studying Semax biodegradation in the presence of plasma membranes of rat brain was developed. It is based on the use of the peptide homogeneously labeled with tritium and on an HPLC analysis with UV detection at 220 and 254 nm of the peptide fragments formed. The half-life of Semax in the presence of the plasma membranes was demonstrated to be longer than 1 h. Dipeptidylaminopeptidases are considered to be the main enzymes responsible for its biodegradation; they successively cleave Semax to the HFPGP pentapeptide and the PGP tripeptide.  相似文献   

13.
A series of optimized sulfonamide derivatives was recently reported as novel inhibitors of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD). These are based on naphthalene-N-sulfonyl-D-glutamic acid and have the D-glutamic acid replaced with rigidified mimetics. Here we have defined the binding site of these novel ligands to MurD using 1H/13C heteronuclear single quantum correlation. The MurD protein was selectively 13C-labeled on the methyl groups of Ile (δ1 only), Leu and Val, and was isolated and purified. Crucial Ile, Leu and Val methyl groups in the vicinity of the ligand binding site were identified by comparison of chemical shift perturbation patterns among the ligands with various structural elements and known binding modes. The conformational and dynamic properties of the bound ligands and their binding interactions were examined using the transferred nuclear Overhauser effect and saturation transfer difference. In addition, the binding mode of these novel inhibitors was thoroughly examined using unrestrained molecular dynamics simulations. Our results reveal the complex dynamic behavior of ligand–MurD complexes and its influence on ligand–enzyme contacts. We further present important findings for the rational design of potent Mur ligase inhibitors.  相似文献   

14.
Well-orchestrated maternal–fetal cross talk occurs via secreted ligands, interacting receptors, and coupled intracellular pathways between the conceptus and endometrium and is essential for successful embryo implantation. However, previous studies mostly focus on either the conceptus or the endometrium in isolation. The lack of integrated analysis impedes our understanding of early maternal–fetal cross talk. Herein, focusing on ligand–receptor complexes and coupled pathways at the maternal–fetal interface in sheep, we provide the first comprehensive proteomic map of ligand–receptor pathway cascades essential for embryo implantation. We demonstrate that these cascades are associated with cell adhesion and invasion, redox homeostasis, and the immune response. Candidate interactions and their physiological roles were further validated by functional experiments. We reveal the physical interaction of albumin and claudin 4 and their roles in facilitating embryo attachment to endometrium. We also demonstrate a novel function of enhanced conceptus glycolysis in remodeling uterine receptivity by inducing endometrial histone lactylation, a newly identified histone modification. Results from in vitro and in vivo models supported the essential role of lactate in inducing endometrial H3K18 lactylation and in regulating redox homeostasis and apoptotic balance to ensure successful implantation. By reconstructing a map of potential ligand–receptor pathway cascades at the maternal–fetal interface, our study presents new concepts for understanding molecular and cellular mechanisms that fine-tune conceptus–endometrium cross talk during implantation. This provides more direct and accurate insights for developing potential clinical intervention strategies to improve pregnancy outcomes following both natural and assisted conception.  相似文献   

15.
We performed molecular modeling and docking to predict a putative binding pocket and associated ligand–receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor.  相似文献   

16.
Complexes of DNA with actinocin derivatives containing benzocrown groups at positions 1 and/or 9 of the chromophore were studied by spectrophotometric titration and circular dichroism. The actinocin chromophore and the crown fragments are the DNA-binding sites of the ligands. The mode of ligand–DNA binding is shown to depend on the size of the crown group, its distance to the actinocin chromophore, and the ionic strength of the medium. Na+-selective benzocrown fragments combine with DNA phosphate groups. The simultaneous interaction of the actinocin chromophore with the DNA bases is possible only at an optimal distance between the two binding sites of ligand molecule.  相似文献   

17.
Hexokinase catalyzes the phosphorylation of glucose and is the first enzyme in glycolysis. To investigate enzyme–ligand interactions in yeast hexokinase isoform PII under physiological conditions, we utilized the technique of Saturation Transfer Difference NMR (STD NMR) to monitor binding modes and binding affinities of different ligands at atomic resolution. These experiments clearly show that hexokinase tolerates several changes at C-2 of its main substrate glucose, whereas epimerization of C-4 significantly reduces ligand binding. Although both glucose anomers bind to yeast hexokinase, the α-form is the preferred form for the phosphorylation reaction. These findings allow mapping of tolerated and prohibited modification sites on the ligand. Furthermore, competitive titration experiments show that mannose has the highest binding affinity of all examined sugars. As several naturally occurring sugars in cells show binding affinities in a similar range, hexokinase may be considered as an ‘emergency enzyme’ in yeast cells. Taken together, our results represent a comprehensive analysis of ligand–enzyme interactions in hexokinase PII and provide a valuable basis for inhibitor design and metabolic engineering.  相似文献   

18.
Among the structurally similar guanidinonaltrindole (GNTI) compounds, 5′-GNTI is an antagonist while 6′-GNTI is an agonist of the κOR opioid receptor. To explore how a subtle alteration of the ligand structure influences the receptor activity, we investigated two concurrent processes: the final steps of ligand binding at the receptor binding site and the initial steps of receptor activation. To trace these early activation steps, the membranous part of the receptor was built on an inactive receptor template while the extracellular loops were built using the ab initio CABS method. We used the simulated annealing procedure for ligand docking and all-atom molecular dynamics simulations to determine the immediate changes in the structure of the ligand–receptor complex. The binding of an agonist, in contrast to an antagonist, induced the breakage of the “3–7 lock” between helices TM3 and TM7. We also observed an action of the extended rotamer toggle switch which suggests that those two switches are interdependent.  相似文献   

19.
The recognition of carbohydrates by lectins plays key roles in diverse cellular processes such as cellular adhesion, proliferation, and apoptosis, which makes it a therapeutic target of significance against cancers. One of the most functionally active lectins, galectin-3 is distinctively known for its specific binding affinity toward β-galactoside. However, despite the prevalence of high-resolution crystallographic structures, the mechanistic basis and more significantly, the dynamic process underlying carbohydrate recognition by galectin-3 are currently elusive. To this end, we employed extensive Molecular Dynamics simulations to unravel the complete binding event of human galectin-3 with its native natural ligand N-acetyllactosamine (LacNAc) at atomic precision. The simulation trajectory demonstrates that the oligosaccharide diffuses around the protein and eventually identifies and binds to the biologically designated binding site of galectin-3 in real time. The simulated bound pose correlates with the crystallographic pose with atomic-level accuracy and recapitulates the signature stabilizing galectin-3/oligosaccharide interactions. The recognition pathway also reveals a set of transient non-native ligand poses in its course to the receptor. Interestingly, kinetic analysis in combination with a residue-level picture revealed that the key to the efficacy of a more active structural variant of the LacNAc lay in the ligand’s resilience against disassociation from galectin-3. By catching the ligand in the act of finding its target, our investigations elucidate the detailed recognition mechanism of the carbohydrate-binding domain of galectin-3 and underscore the importance of ligand–target binary complex residence time in understanding the structure–activity relationship of cognate ligands.  相似文献   

20.
Antihistamines have potent efficacy to alleviate COVID-19 (Coronavirus disease 2019) symptoms such as anti-inflammation and as a pain reliever. However, the pharmacological mechanism(s), key target(s), and drug(s) are not documented well against COVID-19. Thus, we investigated to decipher the most significant components and how its research methodology was utilized by network pharmacology. The list of 32 common antihistamines on the market were retrieved via drug browsing databases. The targets associated with the selected antihistamines and the targets that responded to COVID-19 infection were identified by the Similarity Ensemble Approach (SEA), SwissTargetPrediction (STP), and PubChem, respectively. We described bubble charts, the Pathways-Targets-Antihistamines (PTA) network, and the protein–protein interaction (PPI) network on the RPackage via STRING database. Furthermore, we utilized the AutoDock Tools software to perform molecular docking tests (MDT) on the key targets and drugs to evaluate the network pharmacological perspective. The final 15 targets were identified as core targets, indicating that Neuroactive ligand–receptor interaction might be the hub-signaling pathway of antihistamines on COVID-19 via bubble chart. The PTA network was constructed by the RPackage, which identified 7 pathways, 11 targets, and 30 drugs. In addition, GRIN2B, a key target, was identified via topological analysis of the PPI network. Finally, we observed that the GRIN2B-Loratidine complex was the most stable docking score with −7.3 kcal/mol through molecular docking test. Our results showed that Loratadine might exert as an antagonist on GRIN2B via the neuroactive ligand–receptor interaction pathway. To sum up, we elucidated the most potential antihistamine, a key target, and a key pharmacological pathway as alleviating components against COVID-19, supporting scientific evidence for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号