首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In silico analysis showed that the differentially expressed type 3 oil palm metallothionein-like genes MT3-A and MT3-B share at least 11 common putative promoter regulatory elements. The identified motifs include W-boxes, TATCCA element, binding element for cytokinin response regulators and pollen-specific elements. A high degree of conservation was observed in their genomic organisation where the coding regions are divided at two identical positions in both genes by two AT-rich introns. Promoter activity of the MT3-B gene was analysed using a transient assay by bombarding oil palm tissue slices with a β-glucuronidase (GUS) gene construct and a stable reporter assay by analysing GUS expression in transformed Arabidopsis thaliana plants. Transient expression analysis revealed MT3-B promoter activity in oil palm root tissues but not in fruit mesocarp at 12 weeks after anthesis and spear leaves. The T3 homozygous transgenic Arabidopsis plants, harbouring the MT3-B promoter/GUS construct, showed reporter activity in cotyledons and mature leaves with lower expression levels in root tissues. The expression levels in the roots of the T3 homozygous transgenic plants increased five- and 2.5-folds when treated with 80 μM of Zn2+ and Fe2+, respectively. Altogether, these results indicate that the MT3-A and MT3-B promoter activities may be regulated by a variety of abiotic factors and MT3-B promoter may potentially be manipulated for use in plant genetic engineering for induced synthesis of gene product.  相似文献   

2.
3.
4.
5.
6.
7.
Metallothioneins (MTs) are cysteine-rich proteins required for heavy metal tolerance in animals and fungi. Recent results indicate that plants also possess functional metallothionein genes. Here we report the cloning and characterization of five metallothionein genes fromArabidopsis thaliana. The position of the single intron in each gene is conserved. The proteins encoded by these genes can be divided into two groups (MT1 and MT2) based on the presence or absence of a central domain separating two cysteine-rich domains. Four of the MT genes (MT1a,MT1c,MT2a andMT2b) are transcribed inArabidopsis. Several lines of evidence suggest that the fifth gene,MT1b, is inactive. There is differential regulation of the MT gene family. MT1 mRNA is expressed highly in roots, moderately in leaves and is barely detected in inflorescences and siliques. MT2a and MT2b mRNAs are more abundant in leaves, inflorescences and in roots from mature plants, but are also detected in roots of young plants, and in siliques. MT2a mRNA is strongly induced in seedlings by CUSO4, whereas MT2b mRNA is relatively abundant in this tissue and levels increase only slightly upon exposure to copper.MT1a andMT1c are located within 2 kb of each other and have been mapped to chromosome 1.MT1b andMT2b map to separate loci on chromosome V, andMT2a is located on chromosome III. The locations of these MT genes are different from that ofCAD1, a gene involved in cadmium tolerance inArabidopsis.  相似文献   

8.
Metallothioneins (MTs) are cysteine-rich proteins required for heavy metal tolerance in animals and fungi. Recent results indicate that plants also possess functional metallothionein genes. Here we report the cloning and characterization of five metallothionein genes fromArabidopsis thaliana. The position of the single intron in each gene is conserved. The proteins encoded by these genes can be divided into two groups (MT1 and MT2) based on the presence or absence of a central domain separating two cysteine-rich domains. Four of the MT genes (MT1a,MT1c,MT2a andMT2b) are transcribed inArabidopsis. Several lines of evidence suggest that the fifth gene,MT1b, is inactive. There is differential regulation of the MT gene family. MT1 mRNA is expressed highly in roots, moderately in leaves and is barely detected in inflorescences and siliques. MT2a and MT2b mRNAs are more abundant in leaves, inflorescences and in roots from mature plants, but are also detected in roots of young plants, and in siliques. MT2a mRNA is strongly induced in seedlings by CUSO4, whereas MT2b mRNA is relatively abundant in this tissue and levels increase only slightly upon exposure to copper.MT1a andMT1c are located within 2 kb of each other and have been mapped to chromosome 1.MT1b andMT2b map to separate loci on chromosome V, andMT2a is located on chromosome III. The locations of these MT genes are different from that ofCAD1, a gene involved in cadmium tolerance inArabidopsis.  相似文献   

9.
Five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var.deliciosa cv. Hayward) were isolated from a library made from young fruit, 8–10 days after anthesis. One gene (pKIWI503) has low levels of expression in young fruit but is induced late in fruit development and during fruit ripening, and has some homology to plant metallothionein-like proteins. The other four genes are highly expressed in young fruit with reduced expression in the later stages of fruit development. pKIWI504 has strong homology to plant metallothionein-like proteins and pKIWI505 exhibits homology to the -subunit of the mitochondrial ATP synthase gene. The two other genes (pKIWI501 and 502) encode proteins with no significant homology to other known sequences.  相似文献   

10.
11.
We have isolated two cDNAs encoding small GTP-binding proteins from leaf cDNA libraries. These cDNAs encode distinct proteins which show considerable homology to members of the ras superfamily. Np-ypt3, a 1044 bp long Nicotiana plumbaginifolia cDNA, encodes a 24.4 kDa protein which shows 65% amino acid sequence similarity to the Schizosaccharomyces pombe ypt3 protein. The N-ypt3 gene is differentially expressed in mature flowering plants. Expression of this gene is weak in leaves, higher in stems and roots, but highest in petals, stigmas and stamens. Nt-rab5, a 712 bp long Nicotiana tabacum SR1 cDNA, encodes a 21.9 kDa protein which displays 65% amino acid sequence similarity to mammalian rab5 proteins. The expression pattern of the Nt-rab5 gene is very similar to that of the Np-ypt3 gene. The Nt-rab5 gene is virtually not expressed in leaves, higher in stems and roots, and highest in flowers. Both the Nt-rab5 and Np-ypt3 proteins were expressed in Escherichia coli and shown to bind GTP.  相似文献   

12.
13.
14.

Background and aims

Rice (Oryza sativa L.) is the primary source of carbohydrate for the majority of the World's population. Herbaspirillum seropedicae is a diazotroph that lives within and on the surface of rice roots. It can promote the growth of rice, partly by supplying it with fixed nitrogen.

Methods

To better understand the rice–H. seropedicae interaction, cDNA libraries from rice roots either inoculated (RRCH) or uninoculated (RRSH) with the diazotroph were obtained and analysed.

Results

Potential differentially expressed genes identified from the libraries encoded a metallothionein-like protein type 1, a NOD26-like membrane integral protein ZmNIP2-1, a thionin family protein, an oryzain gamma chain precursor, stress-associated protein 1 (OsISAP1), probenazole-inducible protein PBZ1 and auxin- and ethylene-responsive genes. Differential expression was analysed by qRT-PCR for some of these genes and confirmed in most cases. The expression of stress- and defence-related genes coding for thionins, PBZ1 and OsISAP1 was repressed, while expression of a metallothionein gene was induced by inoculation with H. seropedicae. In contrast, expression of auxin-responsive genes was repressed, while expression of ethylene genes was either repressed or induced. The possible involvement of these and other genes in plant-bacterial interactions is discussed.

Conclusions

The decrease in expression of the defence-related proteins PBZ1 and thionins in the rice–H. seropedicae association, suggests that the bacteria modulate plant defence responses during colonisation. The expression of genes responsive to auxin and ethylene also appears to be regulated by the bacteria.  相似文献   

15.
Metallothioneins are small cysteine-rich proteins with strong binding capacity for heavy metals. In animals and fungi they are involved in cellular detoxification processes. Although genes for similar proteins exist in plants, less is known about the putative functions of their protein products. Here, we describe the characterisation of cDNAs specific for four genes (LEMT1, LEMT2, LEMT3 and LEMT4) encoding metallothionein-like proteins from tomato. Based on the characteristic cysteine pattern, the LEMT1, LEMT3 and LEMT4 gene products represent type 2 proteins. In contrast, the LEMT2 protein might establish a new structural pattern of metallothionein-like proteins not described before. Mapping experiments demonstrate that all four genes are localised at different genetic loci within the tomato genome. The members of the small gene family show a differential organ specific expression pattern. Expression of these genes is also influenced by heavy metals and by treatment with the thiol-oxidising drug diamide. We further describe the expression of the LEMT genes under different iron supply conditions both in tomato wild type as well as in the mutant chloronerva, which is defective in metal uptake regulation and exhibits a characteristic apparent iron deficiency syndrome.  相似文献   

16.
以鲁花14号花生为材料,从花生cDNA文库和基因组中筛选和克隆了花生的金属硫蛋白基因AhMT3a。该基因全长785 bp,有2个内含子,开放阅读框由201个碱基组成,编码66个氨基酸,其中包含13个半胱氨酸(Cys),预测其分子量为6.83kD,等电点为4.59。运用生物信息学手段对AhMT3a蛋白的信号肽、跨膜区、亚细胞定位和疏水性进行了预测。与拟南芥、棉花和草莓等植物type 3 MTs的序列比对结果表明,花生和其他不同植物的MT3在氨基酸序列上具有较高的同源性,从系统发育树中可以看出AhMT3a和蒿麦的金属硫蛋白亲缘关系较近。半定量RT-PCR和芯片杂交结果显示花生AhMT3a在花中表达量最高,在种子中表达量最低;在ABA、NaCl及PEG等不同处理下,表达量变化不大。  相似文献   

17.
18.
19.
Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T0). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T1) produced the highest GUS activity when treated with 150 μM Cu2+ compared to the control (without Cu2+). However, Zn2+ and Fe2+ treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T1 seedlings of tomato when subjected to Cu2+ ions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号