首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Summary Heteroconjugate (HC) antibody (anti-CD3 mAb × anti-p97 melanoma mAb) or monomeric anti-CD3 mAb by itself did not induce proliferation of uncultured melanoma tumor-infiltrating lymphocytes (TILs). They also failed to induce IL-2 production in uncultured TILs, although anti-CD3 mAb, but not HC antibody, stimulated IL-2 production in peripheral blood mononuclear cells (PBMCs). Sequential treatment of uncultured TILs from p97-antigen-positive (p97+) melanomas with HC antibody, followed by washing and incubation with interleukin-2 (IL-2), induced significantly higher proliferation than incubation with IL-2 alone. HC antibody pretreatment led to significantly greater results than with anti-CD3 mAb at a 1 ng/ml level in IL-2-induced proliferation of TILs from p97+ melanomas, similar to those with anti-CD3 mAb at a level of 100 ng/ml. HC antibody (1 ng/ml) pretretment did not enhance IL-2-induced proliferation of either TILs from p97 melanomas or PBMCs, while anti-CD3 mAb enhanced the proliferation of TILs from some p97 melanomas and PBMCs. Regardless of the pretreatment of uncultured TILs with HC antibody or anti-CD3 mAb, IL-2-activated TILs were cytotoxic primarily only to autologous tumor cells, and their phenotypes remained the same. Thus, HC antibody can augment IL-2-induced activation of TILs only from p97+ melanomas, without altering their pattern of cytotoxicity or phenotype. The findings were consistent with observations at the clonal level. In contrast to anti-CD3 mAb, HC pretreatment of uncultured TILs from only p97+ melanoma prior to limiting-dilution analysis increased the number of proliferating TIL clones, including autologous tumor-specific cytotoxic T lymphocyte clones. These results suggest that use of HC antibody in vivo would be more advantageous than anti-CD3 mAb, with regard to augmentation of IL-2-induced TIL activation.This work was supported in part by grants CA47 891, CA09 599, and RR5511-27 from the National Institutes of Health  相似文献   

2.
CTL lines were established in vitro by stimulating patient lymphocytes with autologous melanoma cells in the presence of IL-2. Resulting CTL lines lysed autologous melanoma and failed to lyse several allogeneic melanomas or K562. The mechanism of target cell recognition by autologous tumor-specific CTL was evaluated in this system, using several CTL lines: DT6, DT105, DT141, DT166, DT169, and DT179. Autologous melanoma lysis was inhibited by W6/32, mAb directed against HLA class I Ag, but not by L243, mAb directed against HLA class II Ag. CTL from DT6, DT141, DT166, DT169, and DT179 lysed fresh and cultured allogeneic melanomas, which shared the HLA-A2 Ag, but failed to lyse allogeneic melanomas, which shared B-region or C-region Ag, or shared no HLA class I Ag. CTL from DM141 lysed DM93, which shared A2 and Bw6, but failed to lyse DM105, which shared only Bw6. DM105 CTL failed to lyse allogeneic melanomas that shared HLA-A1, or that shared B or C region Ag, but they did lyse allogeneic melanoma DM49, which expressed an A region Ag that either was A10 or was serologically cross-reactive with A10. A T cell leukemia line, three EBV transformed B cell lines, and a pancreatic cancer line, all of which expressed HLA-A2, were not lysed by DM6 or DM179 CTL. Furthermore, HLA-matched nonmelanomas failed to inhibit autologous tumor lysis in cold target inhibition assays, whereas an HLA-A2+ allogeneic melanoma, DM93, inhibited autologous tumor lysis as effectively as the autologous tumor itself. HLA-A2, and possibly other HLA-A-region Ag, appear to function in HLA-restricted recognition of shared melanoma associated Ag by CTL.  相似文献   

3.
Activation of peripheral blood lymphocytes (PBL) from a melanoma patient either in secondary MLC in which EBV-transformed B cells from the cell line JY were used as stimulator cells, or by co-cultivation with the autologous melanoma cells in a mixed leukocyte tumor cell culture (MLTC) resulted in the generation of cytotoxic activity against the autologous melanoma (O-mel) cells. From these activated bulk cultures four cloned cytotoxic T lymphocyte (CTL) lines were isolated. The CTL clone O-1 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+), and O-36 (T3+, T4-, T8+, OKM-, HNK-, and HLA-DR+) were obtained from MLC, whereas the CTLC clones O-C7 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+) and O-D5 (T3+, T4-, T8+, OKM-1-, HNK, and HLA-DR+) were isolated from autologous MLTC. All four CTL clones were strongly cytotoxic for O-mel cells but failed to lyse autologous fibroblasts and autologous T lymphoblasts. Moreover, the CTL clones lacked NK activity as measured against K562 and Daudi cells. Panel studies indicated that the CTL clones also killed approximately 50% of the allogeneic melanoma cells preferentially, whereas the corresponding T lymphoblasts were not lysed. Monoclonal antibodies against class I (W6/32) and class II (279) MHC antigens failed to block the reactivity of the CTL clones against O-mel and allogeneic melanoma cells, indicating that a proportion of human melanoma cells share determinants that are different from HLA antigens and that are recognized by CTL clones. In contrast to the CTL clones isolated from MLTC, the clones obtained from MLC also lysed JY cells, which initially were used as stimulator cells. The reactivity of O-36 against JY could be inhibited with W6/32, demonstrating that this reactivity was directed against class I MHC antigens. These results suggest that the lysis of O-mel and JY cells by O-36 has to be attributed to two independent specificities of this CTL clone. The specificity of the other cross-reactive CTL clone (O-1) could not be determined. The notion that individual CTL clones can have two specificities was supported by the following observations. The cytotoxic reactivity of both O-1 (T4+) and O-36 (T8+) against JY was blocked by monoclonal antibodies directed against T3 and human LFA-1, and against T3, T8, and human LFA-1, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Summary This study investigates the nature and specificity of cytotoxic T lymphocytes (CTL) in patients with melanoma which are able to kill autologous melanoma cells. Interleukin 2 (IL2)-dependent T cell clones from two melanoma patients and a normal subject were generated in mixed lymphocyte cultures (MLC) or mixed lymphocyte tumor cell cultures (MLTC) and propagated for prolonged periods in tissue culture. Analysis of their phenotype by a wide range of monoclonal antibodies (M.Abs) revealed two main phenotypes which depended on whether they expressed Fc receptors detected by Leu 11 M.Abs or not. Leu 11 T cells (referred to as Type 1) were inhibited by M.Abs to T3, T8, and a common HLA, ABC antigen. Conversely Leu 11+ T cells (referred to as Type 2) were inhibited by M.Ab to Leu 11 but not by M.Ab to T3, T8 and the HLA, ABC antigen. Subtypes among Type 1 cells were recognized which depended on their specificity. The most restricted were CTL [Type 1(a)] clones generated only in MLTC which recognized the autologous melanoma cell plus 1 of 11 other melanoma target cells. Type 1(b) CTL clones recognized a larger proportion (approximately 50%) of the melanoma cells. A third category [Type 1(c)] recognized antigens on melanoma cells shared with that on the EBV-transformed B cells used as stimulators in the MLC. Type 2 CTL clones had broad specificity to melanoma and nonmelanoma cells, characteristic of that described for lymphokine activated killer (LAK) cells. The latter were MHC unrestricted but further studies are required to clarify whether the Type 1 CTL clones are MHC restricted or not. The CTL activity of all clones was inhibited by M.Ab to the sheep red blood cell receptor and to the T10 antigens. It is suggested that recognition of these different types of CTL clones may assist future studies on the immune response against melanoma and the nature of antigens recognized by CTL.  相似文献   

5.
Twenty-five CD4+ cytotoxic T lymphocyte (CTL) clones were obtained from the peripheral blood or tumor tissues of melanoma patients undergoing active specific immunotherapy. Melanoma-reactive T cells were cloned by limiting dilution using either autologous or allogeneic melanoma cells to stimulate their proliferation. Sixteen of the clones reacted against autologous melanoma cells but not against the autologous lymphoblastoid cell line, which we defined as melanoma-specific. Optimal demonstration of the lytic activity of CD4+ CTL required a 16-h incubation period and an effectortarget cell ratio of 401. In addition, a 24-h pre-incubation of the target melanoma cells with 100 U interferon (IFN) consistently augmented lysis by these CD4+ CTL, increasing it from a mean level of 20% to one of 52%. Lysis by 8 of the 11 melanoma-reactive CD4+ T cell clones was exclusively HLA-class-I-restricted, as judged by blocking with monoclonal antibodies (mAb). Five of these HLA class-I-restricted clones were reactive only with the autologous melanoma cells, while the other 3 clones were also reactive with allogeneic melanoma cells. In all cases, the T cells and melanoma targets shared at least one HLA class I allele, usually HLA-A2, HLA-C3 or HLA-B62. Interestingly, lysis by 2 of the 11 clones was inhibited by both anti-HLA-class-I or -HLA-class-II mAb, while lysis by 1 other clone was inhibited by neither. HLA class I molecules and several accessory molecules were maximally expressed by the melanoma target cells, both in terms of distribution and copy number before IFN treatment. Thus, IFN may have acted by increasing the expression of melanoma-associated epitopes as presented by HLA class I (or HLA class II) molecules. A proportion of human CD4+CTL appeared to recognize melanoma-associated epitopes presented by the HLA class I molecule, although their lytic potency may be less than that of their CD8+ counterparts.This work was supported by USPHS grant R01-CA 36233, and a grant from the Concern Foundation for Cancer Research.  相似文献   

6.
Summary Lymphokine production by human melanoma tumor-infiltrating lymphocytes (TIL) was studied. Uncultured TIL produced interferon (IFN), but not interleukin-2 (IL-2) or IL-4, in response to anti-CD3 mAb or IL-2. In bulk cultures, IL-2-activated TIL displaying autologous tumor-specific cytotoxicity (CTL-TIL) produced IFN in culture with medium alone, whereas IL-2-activated noncytotoxic TIL did not. Addition of anti-CD3 mAb or autologous tumor cells up-regulated IFN production in IL-2-activated TIL from 10 of 12 or 6 of 12 cases respectively. Those from 4 of 12 cases (2 CTL-TIL and 2 noncytotoxic TIL) produced IL-2 in culture with medium alone. At the clonal level, 5 (4 CD4+ and 1 CD8+) of 7 autologous tumor-specific CTL clones derived from TIL and 3 (2 CD4+ and 1 CD8+) of 7 noncytotoxic TIL clones produced IFN in culture with medium alone, which was up-regulated by adding anti-CD3 mAb. Two IFN-producing CTL clones tested produced IL-2 in 4 ×-concentrated supernatants from a 3.5-h culture with medium alone. Furthermore, 2 IFN-producing CTL clones tested expressed mRNA for both IFN and IL-2. IL-2 production and its mRNA expression were up- or down-regulated, respectively, by adding anti-CD3 mAb or autologous tumor cells. IL-4 production was not observed in culture either with medium alone or with IL-2 in any of the cells described above. Anti-CD3 mAb was required for IL-4 production in 3 of 12 IL-2-activated TIL, 2 of 6 CTL clones, and none of 5 noncytotoxic TIL clones. In summary, IFN production was characteristic of melanoma TIL. Some autologous tumor-specific CTL in TIL are suggested to be productive of IL-2 and IFN under unstimulated conditions, both being required for self-activation in an autocrine loop.This work was supported in part by grant CA-47891 from the National Cancer Institute  相似文献   

7.
 Peripheral blood mononuclear cells (PBMC) from cancer patients were cultured in vitro with irradiated autologous tumor cells isolated from malignant effusions (mixed lymphocyte tumor cultures, MLTC) and low-dose (50 IU/ml) recombinant interleukin-2 (IL-2). The combination of IL-2 and prothymosin α (ProTα) resulted in a greater PBMC-induced response to the autologous tumor than that brought about by IL-2 alone. In particular, ProTα specifically enhanced the CD4+ T-cell-mediated proliferation against the autologous tumor. CD4+ T cells seemed to recognize tumor antigens presented by HLA-DR molecules expressed on the autologous monocytes, since preincubation of the latter with an anti-HLA-DR monoclonal antibody (mAb) abrogated the response. In addition, MLTC set up with IL-2 and ProTα also generated more MHC-class-I-restricted cytotoxic T lymphocytes (CTL) against the autologous tumor than did MLTC set up with IL-2 alone. The MLTC-induced CTL contained high levels of cytoplasmic perforin and their development was strictly dependent on the presence of both autologous CD4+ T cells and monocytes. In the absence of either population there was a strong impairment of both proliferative and cytotoxic responses which was not restored by the presence of ProTα. In contrast, when both cell populations were present, ProTα exerted optimal enhancement of CD4+ T cell proliferation, which was associated with potentiated CTL responses. Our data emphasize the role of ProTα for the enhancement of IL-2-induced CTL responses against autologous tumor cells. Such responses require collaborative interactions between CD4+, CD8+ T cells and monocytes as antigen-presenting cells. Our data are relevant for adoptive immunotherapeutic settings utilizing IL-2 and ProTα-induced autologous-tumor-specific CTL. Received: 2 March 2000 / Accepted: 1 June 2000  相似文献   

8.
Human melanoma is an immunogenic neoplasm whereby enhancement of specific cell-mediated immunity can alter tumor progression. HLA-A2-restricted CTL have been demonstrated to kill allogeneic HLA-A2-matched melanoma. We investigated the ability of allogeneic melanoma cells sharing HLA-A antigens to sensitize melanoma patients' lymphocytes to induce HLA-A-restricted CTL to autologous melanoma. PBL from melanoma patients were cocultured with autologous melanoma cells in defined "cocktail medium" to generate melanoma-specific HLA-A-restricted CTL lines. CTL generated by sensitization with allogeneic melanoma bearing shared HLA-A2, A11, A24, or "cross-reactive" HLA-A antigens could kill almost as many autologous melanoma cells as CTL sensitized with autologous melanoma. There are HLA-A antigens that are immunogenically cross-reactive because they share determinant epitopes. CTL were not activated NK or LAK cells. The HLA restriction and melanoma cell specificity of the CTL were demonstrated by cold target inhibition with autologous and allogeneic melanoma and B lymphoblasts. Anti-CD3 and anti-HLA AB inhibited CTL killing of melanoma. The CTL were predominantly CD3+CD4+ TCR alpha/beta+. These studies demonstrate that melanomas being shared or cross-reactive HLA-A can be used for in vitro generation of HLA-restricted CTL that recognize melanoma-associated antigens. The findings have very important implications in human tumor immunotherapy.  相似文献   

9.
To characterize the anti-melanoma reactivity of CD8+ cytotoxic T lymphocytes (CTL) from choroidal melanoma patients, CTL clones were isolated from the peripheral blood of three patients after mixed lymphocyte/tumor cell culture (MLTC). Clones were derived from lymphocytes stimulated by allogeneic (OCM-1, A24, A28) or autologous (OCM-3, Al, A30) melanoma cells. Their reactivity against a panel of HLA-typed melanoma and nonmelanoma cells was assessed, to determine whether a single CTL clone could recognize and lyse a variety of allogeneic melanoma cell lines. While proportionately more clones derived from autologous MLTC were melanoma-specific than allogeneic MLTC (42% versus 14%), melanoma-specific CTL were recovered from both. Notably, a novel melanoma specificity was identified. These CTL clones were termed non-fastidious because they were capable of lysing melanoma cells with which they had no HLA class I alleles in common. Nonetheless, lysis was mediated by the HLA class I molecule. Since lysis was specific for melanoma cells, these CTL appeared to recognize a shared melanoma peptide(s). Because of their prevalence, we propose that non-fastidious CTL are integral to human anti-melanoma T cell immunity. This reinforces clinical findings that allogeneic melanomas can substitute for autologous tumors in active specific immunotherapy. By circumventing the need for autologous melanoma, it is possible to treat patients after removal of the primary choroidal melanoma in an attempt to prevent metastasis.Supported by USPHS grants EY-09031 and EY-09427, and the Lucy Adams Choroidal Melanoma Research Fund to J. K.-M.  相似文献   

10.
CTL clones were developed from tumor infiltrating lymphocytes (TIL) from the ascites of a patient with ovarian carcinoma by coculture of TIL with autologous tumor cells and subsequent cloning in the presence of autologous tumor cells. These CTL clones expressed preferential cytolytic activity against autologous tumor cells but not against allogeneic ovarian tumor cells and the NK-sensitive cell line K562. The cytolytic activity of these CTL against autologous tumors was inhibited by anti-TCR (WT31 mAb), anti-HLA class I, and anti-CD3 mAb but not by the NK function antibody Leu 11b. Cloning of the autologous tumor cells in vitro revealed that the CTL clones of the ovarian TIL expressed differential abilities to lyse autologous tumor cell clones. The specificity analysis of these autologous tumor specific CTL suggested that they recognize several antigenic determinants present on the ovarian tumor cells. Our results indicate the presence of at least three antigenic epitopes on the tumor cells (designated OVA-1A, OVA-1B, and OVA-1C), one of which (OVA-1C) is unstable. These determinants are present either simultaneously or separately, and six types of ovarian clones can be distinguished on the basis of their expression. These results indicate that CTL of the TIL detect intratumor antigenic heterogeneity. The novel heterogeneity identified within the ovarian tumor cells in this report may be of significance for understanding cellular immunity in ovarian cancer and developing adoptive specific immunotherapeutic approaches in ovarian cancer.  相似文献   

11.
 Determinants of T cell responses to tumor cells remain largely unknown. In the present study we have used long-term cultures of human melanoma cells and autologous peripheral blood lymphocytes to examine the influence of cytokines with T cell growth activity on the phenotype and cytotoxic and proliferative response of T cells to melanoma. It was found that addition of interleukin-4 (IL-4) inhibited the response of CD8+ T cells and promoted the response of the CD4 subset. IL-2 or IL-7 was effective in increasing melanoma-specific cytotoxic T lymphocyte (CTL) activity in cultures where CD8 T cells were predominant, whereas IL-4 followed by IL-2 was most effective in cultures where CD4 T cells predominated. IL-10 or IL-12 inhibited proliferation and CTL activity against melanoma in long-term cultures. The effects of IL-12 were reproduced in long-term cultures of T cells stimulated with mAb against CD3 and were shown to depend on prior exposure of T cells to IL-12 before IL-2. As yet unidentified factors, such as co-factor expression on melanoma, appear to be as important as exogenous cytokines in determining the nature of T cell responses to melanoma. These results suggest that analysis of responses in long-term culture may assist in defining the role of key cytokines and other determinants of immune responses to melanoma. Received: 4 June 1996 / Accepted: 12 November 1996  相似文献   

12.
Human rIL-4 was studied for its capacity to induce lymphokine-activated killer (LAK) cell activity. In contrast to IL-2, IL-4 was not able to induce LAK cell activity in cell cultures derived from peripheral blood. IL-4 added simultaneously with IL-2 to such cultures suppressed IL-2-induced LAK cell activity measured against Daudi and the melanoma cell line MEWO in a dose-dependent way. IL-4 also inhibited the induction of LAK cell activity in CD2+, CD3-, CD4-, CD8- cells, suggesting that IL-4 acts directly on LAK precursor cells. IL-4 added 24 h after the addition of IL-2 failed to inhibit the generation of LAK cell activity. Cytotoxic activity of various types of NK cell clones was not affected after incubation in IL-4 for 3 days, indicating that IL-4 does not affect the activity of already committed killer cells. No significant differences were observed in the percentages of Tac+, NKH-1+ and CD16+ cells after culturing PBL in IL-2, IL-4 or combinations of IL-2 and IL-4 for 3 days. IL-4 also inhibited the activation of non-specific cytotoxic activity in MLC, as measured against K-562 and MEWO cells. In contrast, the Ag-specific CTL activity against the stimulator cells was augmented by IL-4. Collectively, these data indicate that IL-4 prevents the activation of LAK cell precursors by IL-2, but does not inhibit the generation of Ag-specific CTL.  相似文献   

13.
Two long-term tumor-infiltrating lymphocyte (TIL) lines and their autologous tumor lines have been established from solid tumors derived from different patients with metastatic melanoma. In 4-hr 51Cr release assays, each TIL culture lysed only the autologous cryopreserved fresh or established melanoma line, but failed to lyse other melanoma tumors or K562 cells. Repeated stimulation of TIL with the autologous melanoma lines resulted in significant increases in anti-tumor CTL activity with no apparent loss in specificity. Stimulated cells have retained cytotoxic activity for up to 5 months in culture. Tumor cell CTL activity for both long-term TIL lines is inhibited by several mAbs, including those against CD3, CD8, and class I MHC molecules, indicating that the effector cells are class I-restricted CD8+, CTL. Furthermore, recognition of Ag on one of the established melanoma lines by TIL is restricted by HLA A-2. The availability of autologous tumor lines may prove clinically useful for the selective stimulation and expansion of cells with anti-tumor activity within a heterogeneous TIL population.  相似文献   

14.
CTL clones isolated from PBL or from tumor-infiltrating lymphocytes (TIL) of a melanoma patient (pt665) were screened for specificity on a panel including autologous tumor cells from two distinct metastases (Me665/1, Me665/2), autologous EBV-transformed B cells and 15 allogeneic cell lines of different histology. Each clone displayed a peculiar cytolytic activity ranging from lysis of most targets (PBL clone 4C4) to preferential reactivity on the two autologous metastases (TIL clone 8B3). Blocking and modulation experiments, revealed that the lysis of autologous-Tu cells by TIL clone 8B3, but not by PBL clone 4C4, could be inhibited by mAb to HLA-class I and to CD3 Ag or by CD3 complex modulation. Clone 8B3 was tested also on a panel of 25 tumor clones from Me665/2, revealing that only 4 neoplastic clones were lysed (2/4, 2/14, 2/17, and 2/51). Cold target competition experiments indicated that the uncloned autologous melanomas and one tumor clone (2/17), but no two other tumor clones (2/10, 2/15), could compete with one another for lysis by 8B3. Determination of melanin content of tumor clones from Me665/2 revealed that the four neoplastic clones recognized by 8B3 possessed much lower melanin levels than all the other 20 clones not lysed by this effector.  相似文献   

15.
To study in vivo activated cytolytic T cells, CD8+ T cells clones were isolated from a melanoma patient (HLA A2, A11) treated with active specific immunotherapy for 5 years. CD8+ T lymphocytes, purified by fluorescence-activated cell sorting, were cloned directly from the peripheral blood without antigen-presenting cells in the presence of irradiated autologous melanoma cells and recombinant interleukin-2 (IL-2) and IL-4. These conditions were inhibitory to de novo in vitro immunization. Of the 28 cytolytic CD8+ T cell clones, 21 lysed the autologous melanoma cell line (M7) but not the autologous lymphoblastoid cell line (LCL-7) nor the two melanoma cell lines, M1 (HLA A28) and M2 (HLA A28, A31), used to immunize the patient. The remaining 7 clones were also melanoma-specific, although their reactivities were broader, lysing several melanoma cell lines but not HLA-matched lymphoblastoid cells. Eight clones from the first group, ostensibly self-MHC-restricted, were expanded for further analysis. All expressed cluster determinants characteristic of mature, activated T cells, but not those of thymocytes, naive T cells, B cells or natural killer (NK) cells. They also expressed CD13, a myeloid marker. Of the 8 clones, 3 expressed both CD4 and CD8, but dual expression was not correlated with specificity of lysis. Two CD8+ and 2 CD4+ CD8+ clones were specific for the autologous melanoma cells, the other 4 were also reactive against other HLA-A2-positive melanomas. Cytotoxicity for both singly and doubly positive clones was restricted by HLA class I but not class II antigens. Analysis of the RNA expression of the T cell receptor (TCR) V and V gene segments revealed heterogeneous usage by the A2-restricted clones and, perhaps, also by the broadly melanoma-specific clones. Apparent TCR-restricted usage was noted for the self-MHC-restricted clones; 2 of the 4 expressed the V17/V7 dimer. Since the T cell clones were derived from separate precursors of circulating cytotoxic T lymphocytes (CTL), the V17/V7 TCR was well represented in the peripheral blood lymphocytes of this patient. In summary, we show that melanoma cells presented their own antigens to stimulate the proliferation of melanoma-reactive CD8+ CTL. CTL with a range of melanoma specificities and different TCR dimers were encountered in this patient, perhaps as a result of hyperimmunization. Restricted TCR gene usage was noted only for classical self-MHC-restricted CD8+ T cell clones, although lysis of the autologous melanoma cells was effected by a variety of TCR structures. Molecular definition of the TCR repertoire of well-characterized T cell clones in this and other patients should provide new insight into the human antitumor immune response.Supported by National Institutes of Health research grants CA 36233 and EY 9031, the Lucy Adams Memorial Fund and a grant from the Concern Foundation  相似文献   

16.
Recognition of melanoma antigens by HLA class-II-restricted CD4(+) T lymphocytes has been investigated. Two cytotoxic CD4(+) T cell lines were established by stimulating PBLs from a melanoma patient with either parental or IFN-gamma-transduced autologous tumor cells. These T cells secreted IL-4, but not IL-2, IFN-gamma, or TNF-beta, in response to the autologous melanoma cells, suggesting that they belong to the Th2 subtype. Their cytotoxicity was directed against the IFN-gamma-transduced melanoma cells and was HLA-DR-restricted. The autologous and two allogeneic IFN-gamma-modified melanoma cell lines shared melanoma antigen(s) presented in the context of HLA-DR15. HLA-DR15(+) nonmelanoma cells were resistant targets indicating that the shared antigen(s) is melanoma associated. Parental autologous and HLA-DR-matched allogeneic melanoma cell lines, displaying low levels of HLA-DR antigens, induced Th2 proliferation and cytokine release, but were insensitive to lysis prior to upregulation of HLA-DR and Fas antigens by IFN-gamma. Cytolysis was inhibited by anti-HLA-DR and by anti-Fas antibodies, suggesting that the cytolysis is mediated via the Fas pathway. While small amounts of HLA-DR15 molecules on melanoma cells are sufficient for Th2 proliferation and cytokine release, higher amounts of HLA-DR15 and the expression of Fas are required for CD4(+)-mediated lysis.  相似文献   

17.
 Human melanoma is a highly immunogenic tumor capable of inducing a specific immune response. A number of melanoma-associated antigens have been characterized during the past several years and can be classified into two groups: differentiation antigens  –  present also in normal melanocytes  –  and tumor-specific antigens, which, with the exception of testis, are present only in tumor cells. In a previous publication [Kirkin A. F., Petersen T. R., Olsen A. C., Li L., thor Straten P., Zeuthen J. (1995) Cancer Immunol Immunother 41:71] we have described the production of clones of cytotoxic T lymphocytes (CTL) against the highly immunogenic human melanoma cell line FM3. Using these clones we have defined four previously unknown melanoma-associated antigens, which could be subdivided into differentiation and progression antigens. In the experiments reported in this paper, we have further compared CTL clones from different groups and shown that the sensitivity of melanoma cells to CTL that recognize differentiation or progression antigens is differentially modulated during tumor progression as well as by the lymphokines interferon γ (IFNγ) and interleukin-10 (IL-10). The interaction of CTL clones recognizing progression antigens was strongly increased after treatment of melanoma cells with IFNγ, while the recognition by CTL clones specific for differentiation antigens either was unchanged or significantly decreased. IL-10 treatment of melanoma cells induced up-regulation with respect to recognition by CTL clones specific for differentiation antigens without affecting the recognition of melanoma cells by CTL clones specific for progression antigens. Using cellular systems at different stages of tumor progression, we demonstrated that the progressed state of melanoma cells is associated with increased sensitivity to recognition by CTL clones detecting progression antigens, and with decreased sensitivity to CTL clones recognizing differentiation antigens. Mimicking tumor progression, treatment with IFN-γ induced apparent down-regulation of differentiation antigens. A hypothesis is suggested in which IFN-γ plays different roles in the immune response against poorly immunogenic and highly immunogenic melanoma cells, increasing the progression of poorly immunogenic tumor cells or promoting a strong immune response and regression of highly immunogenic melanoma cells. Received: 23 November 1995 / Accepted: 7 March 1996  相似文献   

18.
Recent approaches toward the immunotherapy of neoplastic disease involve the introduction of expression-competent genes for interleukin-2 (IL-2) into autologous malignant cells. Treatment of tumor-bearing experimental animals with the IL-2-secreting cells successfully induces partial and at times complete remissions. In most instances, however, although delayed, progressive tumor growth continues. Here, certain of the characteristic of B16 melanomas (H-2b) persisting in C57BL/6 mice (H-2b) treated with an IL-2-secreting, melanoma-antigen-positive cellular immunogen (RLBA-IL-2 cells) are described. Unlike the melanoma cells first injected, B16 cells recovered from mice treated with RLBA-IL-2 cells were deficient in the experssion of MHC class I, but not class II determinants. Deficient MHC class I expression correlated with the cells' resistance to cytotoxic T lymphocytes (CTL) from the spleens of mice immunized with RLBA-IL-2 cells. Melanomas persisting in mice treated with non-IL-2-secreting, melanoma-antigen-positive cell constructs (RLBA-ZipNeo cells) were also deficient in the expression of MHC class I determinants, and the melanoma cells were resistant to CTL from mice immunized with RLBA-ZipNeo cells. Thus, the expression of melanoma-associated antigens rather than IL-2-secretion correlated with deficient MHC class I expression by the persistent melanomas. This point was substantiated by the expression of MHC class I antigens by melanomas persisting in mice treated with IL-2-secreting, melanoma-antigen-negative LM cells (LM-IL-2); it was equivalent to that of melanomas in untreated mice. The involvement of MHC class I antigens in the immune resistance of persistent melanoma cells from mice treated with the melanoma-autigen-positive immunogens was indicated by the effect of interferon (IFN) orN-methyl-N-nitro-N-nitrosoguanidine (MNNG) on the susceptibility of the cells to anti-melanoma CTL. Treatment of the resistant melanomas with IFN or MNNG stimulated MHC class I antigen expression and restored the cells' sensitivity to CTL from mice immunized with IL-2-secreting or nonsecreting, melanoma-antigen-positive cellular immunogens. Prior treatment of the treated cells with antibodies to MHC class I determinants inhibited the cells' susceptibility to CTL from mice immunized with RLBA-IL-2 cells.  相似文献   

19.
The effects of monosaccharides on the cytotoxic activity of cytotoxic T lymphocytes (CTL) and three cloned long-term cytotoxic T-lymphocyte lines (CTLL) are compared. Uncultured CTL and clones CTLL-A2 and CTLL-A11 were derived from the peritoneal cavity of C57BL/6 mice immunized against the H-2Dd determinants on the BALB/c sarcoma Meth A. Clone CTLL-R5 was derived from spleen of (BALB/c X C57BL)F1 mice immunized against a unique determinant on the BALB/c radiation-induced leukemia RL male 1. The cell-surface phenotype of the clones is Lyt-1+,2+,3+. Cytotoxic activity of CTLL-A2 and CTLL-R5 as determined by a 4-hr 51Cr-release assay was inhibited over 50% by 1 mM 2-deoxy-D-glucose. CTLL-A11 and the uncultured cytotoxic T cells were more resistant to inhibition by 2DG (40% at 20 mM). Surprisingly, it was found that the addition of D-mannose, D-galactose, D-glucose, L-fucose, alpha-methyl-D-mannose, and N-acetyl-D-glucosamine also inhibited, in a dose-related manner, the cytotoxicity of CTLL-A2 and CTLL-A11. CTLL-R5 showed a more restricted inhibition pattern: only D-mannose and D-galactose were inhibitory. The mechanism of inhibition remains to be clarified.  相似文献   

20.
The present studies were undertaken to characterize Ag presentation by cultured human melanoma cell lines. Cell lines established from "biologically early" lesions of malignant melanoma were able to present the soluble Ag tetanus toxoid (TT) to autologous and HLA-DR-matched allogeneic, TT-immune T cell clones. Proliferation of T cell clones in response to Ag presented by primary melanoma peaked on day 2 of culture with Ag. Ag presentation was blocked by pretreatment of TT-pulsed and fixed melanoma cells with mAb against HLA-DR, but not HLA-DQ, HLA-DP, or HLA-ABC. Ag processing and presentation were inhibited by treating the melanoma cells with ammonium chloride. In parallel with previous findings from this laboratory demonstrating the inability of cell lines cultured from "advanced" primary or metastatic melanoma to induce autologous T cell proliferation, such cell lines also failed to present this exogenous Ag despite the presence of cell-surface HLA-class II molecules. Thus, in contrast to the finding in biologically early melanoma, none of the multiple TT-immune, T cell clones from autologous patients or HLA-DR matched donors was able to respond to TT presented by melanoma cells cultured from advanced disease. Co-incubation studies revealed that metastatic melanoma cells did not secrete inhibitory substances during the APC assay, however, they were able to process TT, rendering it "immunogenic" in the presence of fixed, autologous non-T cells. When fixed, autologous melanoma cells were assayed for their ability to present processed Ag; fixed cells of early but not advanced disease were able to present Ag in this setting, indicating that the presenting limb becomes flawed in the evolution of the metastatic phenotype. Finally, studies of chloroquine inhibition of the capacity of melanoma cells derived from early primary disease to stimulate autologous peripheral blood T cells suggest that such cells process and present tumor-associated Ag in the same fashion as the "model" Ag TT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号