首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many fields of science including population dynamics, the vast state spaces inhabited by all but the very simplest of systems can preclude a deterministic analysis. Here, a class of approximate deterministic models is introduced into the field of epidemiology that reduces this state space to one that is numerically feasible. However, these reduced state space master equations do not in general form a closed set. To resolve this, the equations are approximated using closure approximations. This process results in a method for constructing deterministic differential equation models with a potentially large scope of application including dynamic directed contact networks and heterogeneous systems using time dependent parameters. The method is exemplified in the case of an SIR (susceptible-infectious-removed) epidemiological model and is numerically evaluated on a range of networks from spatially local to random. In the context of epidemics propagated on contact networks, this work assists in clarifying the link between stochastic simulation and traditional population level deterministic models.  相似文献   

2.
The exact general solution is obtained to a linear second order ordinary differential equation which has quite general coefficients depending on an arbitrary function of the independent variable. From this, the exact fundamental solution is derived for the corresponding linear parabolic partial differential equation with coefficients depending on the single space coordinate. In a special case this latter equation reduces to one of the Fokker-Planck type. These coefficients are then generalised and the appropriate fundamental solution is obtained. Extensions are given to linear parabolic equations in two andn space dimensions. The paper provides a collection of basic examples which illustrate and develop the theory for the generation of the exact fundamental solutions. Reduction to, and the corresponding fundamental solutions of the Fokker-Planck equations is presented, where appropriate.  相似文献   

3.
Consideration is made of the roles of certain types of state space and time scales for a random-walk model of individual physiological status change and death. Because the actual measurement of physiological variables omits many variables relevant to survival, we are forced to view this model as operating in a stochastic state space for a population of individuals where only the frequency distributions are deterministic. In this stochastic state space, under the assumption that the “history” of prior movement contains no additional information, the forward partial differential equation is obtained for the distribution of a population whose movement in the selected space is determined by the randomwalk equations. If the initial distribution of the population in the state space is normal, then certain assumptions about movement and mortality will operate to preserve normality thereafter. Under the assumption of normality, simultaneous ordinary differential equations can be derived from the forward partial differential equation defining the distribution function. Examination of the ordinary simultaneous differential equations shows how parameters for certain models of aging and mortality can be obtained.  相似文献   

4.
Many mathematical models for physical and biological problems have been and will be built in the form of differential equations or systems of such equations. With the advent of digital computers one has been able to find (approximate) solutions for equations that used to be intractable. Many of the mathematical techniques used in this area amount to replacing the given differential equations by appropriate difference equations, so that extensive research has been done into how to choose appropriate difference equations whose solutions are “good” approximations to the solutions of the given differential equations. The present paper investigates a different, although related problem. For many physical and biological phenomena the “continuum” type of thinking, that is at the basis of any differential equation, is not natural to the phenomenon, but rather constitutes an approximation to a basically discrete situation: in much work of this type the “infinitesimal step lengths” handled in the reasoning which leads up to the differential equation, are not really thought of as infinitesimally small, but as finite; yet, in the last stage of such reasoning, where the differential equation rises from the differentials, these “infinitesimal” step lengths are allowed to go to zero: that is where the above-mentioned approximation comes in. Under this kind of circumstances, it seems more natural tobuild themodel as adiscrete difference equation (recurrence relation) from the start, without going through the painful, doubly approximative process of first, during the modeling stage, finding a differential equation to approximate a basically discrete situation, and then, for numerical computing purposes, approximating that differential equation by a difference scheme. The paper pursues this idea for some simple examples, where the old differential equation, though approximative in principle, had been at least qualitatively successful in describing certain phenomena, and shows that this idea, though plausible and sound in itself, does encounter some difficulties. The reason is that each differential equation, as it is set up in the way familiar to theoretical physicists and biologists, does correspond to a plethora of discrete difference equations, all of which in the limit (as step length→0) yield the same differential equation, but whose solutions, for not too small step length, are often widely different, some of them being quite irregular. The disturbing thing is that all these difference equations seem to adequately represent the same (physical or biological) reasoning as the differential equation in question. So, in order to choose the “right” difference equation, one may need to draw upon more detailed (physical or) biological considerations. All this does not say that one should not prefer discrete models for phenomena that seem to call for them; but only that their pursuit may require additional (physical or) biological refinement and insight. The paper also investigates some mathematical problems related to the fact of many difference equations being associated with one differential equation.  相似文献   

5.
Inert gas exchange in tissue has been almost exclusively modelled by using an ordinary differential equation. The mathematical model that is used to derive this ordinary differential equation assumes that the partial pressure of an inert gas (which is proportional to the content of that gas) is a function only of time. This mathematical model does not allow for spatial variations in inert gas partial pressure. This model is also dependent only on the ratio of blood flow to tissue volume, and so does not take account of the shape of the body compartment or of the density of the capillaries that supply blood to this tissue. The partial pressure of a given inert gas in mixed-venous blood flowing back to the lungs is calculated from this ordinary differential equation. In this study, we write down the partial differential equations that allow for spatial as well as temporal variations in inert gas partial pressure in tissue. We then solve these partial differential equations and compare them to the solution of the ordinary differential equations described above. It is found that the solution of the ordinary differential equation is very different from the solution of the partial differential equation, and so the ordinary differential equation should not be used if an accurate calculation of inert gas transport to tissue is required. Further, the solution of the PDE is dependent on the shape of the body compartment and on the density of the capillaries that supply blood to this tissue. As a result, techniques that are based on the ordinary differential equation to calculate the mixed-venous blood partial pressure may be in error.  相似文献   

6.
Numerical methods are presented for simulating stochastic-in-time current pulses for an electrodiffusion model of the biological channel, with a fixed applied voltage across the channel. The electrodiffusion model consists of the parabolic advection-diffusion equation coupled either to Gauss' law or Poisson's equation, depending on the choice of boundary conditions. The TRBDF2 method is employed for the advection-diffusion equation. The rectangular wave shape of previously simulated traveling wave current pulses is preserved by the full set of partial differential equations for electrodiffusion.  相似文献   

7.
We find that curvature-driven growth of pores in electrically charged membranes correctly reproduces charge-pulse experiments. Our model, consisting of a Langevin equation for the time dependence of the pore radius coupled to an ordinary differential equation for the number of pores, captures the statistics of the pore population and its effect on the membrane conductance. The calculated pore radius is a linear, and not an exponential, function of time, as observed experimentally. Two other important features of charge-pulse experiments are recovered: pores reseal for low and high voltages but grow irreversibly for intermediate values of the voltage. Our set of coupled ordinary differential equations is equivalent to the partial differential equation used previously to study pore dynamics, but permits the study of longer timescales necessary for the simulations of voltage-clamp experiments. An effective phase diagram for such experiments is obtained.  相似文献   

8.
Following the general form for the differential equation of organism and colonial growth, there is derived a rational formulation for the growth of a bounded cell community (e.g., an organ) equipped with a food supply and a waste removal mechanism. It is shown how, from the integral form and an empirical curve, the vital coefficients of the equation can be derived. Changes to be expected in these coefficients are discussed, and the analytic methods for assessing them are set forth. It is hoped that these equations and similar ones will make it possible to relate empirical curves to the mathematico-biophysical theory of the cell. The opinions or assertions contained herein are the private ones of the writers, and are not to be construed as official or reflecting the views of the Navy Department or the Naval Service at large.  相似文献   

9.
A nonlinear theory is developed that describes the interaction between an annular electron beam and an electromagnetic surface wave propagating strictly transverse to a constant external axial magnetic field in a cylindrical metal waveguide partially filled with a cold plasma. It is shown theoretically that surface waves with positive azimuthal mode numbers can be efficiently excited by an electron beam moving in the gap between the plasma column and the metal waveguide wall. Numerical simulations prove that, by applying a constant external electric field oriented along the waveguide radius, it is possible to increase the amplitude at which the surface waves saturate during the beam instability. The full set of equations consisting of the waveenvelope equation, the equation for the wave phase, and the equations of motion for the beam electrons is solved numerically in order to construct the phase diagrams of the beam electrons in momentum space and to determine their positions in coordinate space (in the radial variable-azimuthal angle plane).  相似文献   

10.
Sandra Hasstedt   《Bio Systems》1978,10(4):319-328
This paper uses the theory of Markov processes to derive stochastic models for a single open biochemical system at st?ady state under 3 sets of assumptions. The system is a one substrate, one product reaction. Each set of assumptions results in a separate solution for the probability functions. A system of linear equations in the probability function as well as an equivalent differential equation in its generating function are derived. The assumption of no flux leads to the first (exact) solution of the linear equations. The form agrees with that of the closed systems. Making assumptions that simplify the system to model active transport results in the second (exact) solution to the linear equations. Assuming the presence of a large number of molecules in the system facilitates obtaining the third (approximate) solution to the differential equations.  相似文献   

11.
A sequence of mathematical models for a species which engages in cannibalism are investigated. The models treat the species as age-structured, and assume that adults consume the unhatched eggs of their own kind. The McKendrick or von Foerster partial differential equation model is first converted into a set of three coupled, nonlinear ordinary differential equations, and then adjusted to describe cannibalism. Some rather unusual dynamical effects are discovered. These include both a Hopf bifurcation and a catastrophic transition from an asymptotically stable equilibrium point to a stable limit cycle.  相似文献   

12.
Swann WH 《FEBS letters》1969,2(Z1):S39-S55
Optimization means the provision of a set of numerical parameter values which will give the best fit of an equation, or series of equations, to a set of data. For simple systems this can be done by differentiating the equations with respect to each parameter in turn, setting the set of partial differential equations to zero, and solving this set of simultaneous equations (as for exwnple in linear regression). In more complicated cases, however, it may be impossible to differentiate the equations, or very difficultly soluble non-linear equations may result. Many numerical optimization techniques to overcome these difficulties have been developed in the least ten years, and this review explains the logical basis of most of them, without going into the detail of computational procedures.The methods fall naturally into two classes - direct search methods, in which only values of the function to be minimized (or maximized) are used - and gradient methods, which also use derivatives of the function. The author considers all the accepted methods in each class, although warning that gradient methods should not be used unless the analytical differentiation of the function to be minimized is possible.If the solution is constrained, that is, certain values of the parameters are regarded as impossible or certain relations between the parameter values must be obeyed, the problem is more difficult. The second part of the review considers methods which have been proposed for the solution of constrained optimization problems.  相似文献   

13.
密度制约竞争二种群Volterra方程解的有界性及参数估计   总被引:2,自引:0,他引:2  
本文给出密度制约且相互竞争二种群Volterra方程解的一种有界性及存在唯一性的证明。基于此,参考单种群Logistic方程反问题的方法”,给出了该Volterra方程参数的一种估计。  相似文献   

14.
Some results are presented relating to the question whether self-sustained oscillations are possible in a sequence of biochemical reactions with end- point inhibition. The model used has a single nonlinear ordinary differential equation coupled to a set of linear equations, with all coefficients in the linear terms equal. The explicit algebraic form of the Hopf-Friedrich bifurcation theory is used to show that when the number of coupled equations is large enough this model has a stable periodic solution when the equilibrium point of the equations has just become unstable.  相似文献   

15.
The present paper describes a geometrically and physically nonlinear continuum model to study the mechanical behaviour of passive and active skeletal muscle. The contraction is described with a Huxley type model. A Distributed Moments approach is used to convert the Huxley partial differential equation in a set of ordinary differential equations. An isoparametric brick element is developed to solve the field equations numerically. Special arrangements are made to deal with the combination of highly nonlinear effects and the nearly incompressible behaviour of the muscle. For this a Natural Penalty Method (NPM) and an Enhanced Stiffness Method (ESM) are tested. Finally an example of an analysis of a contracting tibialis anterior muscle of a rat is given. The DM-method proved to be an efficient tool in the numerical solution process. The ESM showed the best performance in describing the incompressible behaviour.  相似文献   

16.
In a difference or differential equation one is usually interested in finding solutions having certain properties, either intrinsic properties (e.g. bounded, periodic, almost periodic) or extrinsic properties (e.g. stable, asymptotically stable, globally asymptotically stable). In certain instances it may happen that the dependence of these equations on the state variable is such that one may (1) alter that dependency by replacing part of the state variable by a function from a class having some of the above properties and (2) solve the 'reduced' equation for a solution having the remaining properties and lying in the same class. This then sets up a mapping Τ of the class into itself, thus reducing the original problem to one of finding a fixed point of the mapping. The procedure is applied to obtain a globally asymptotically stable periodic solution for a system of difference equations modeling the interaction of wild and genetically altered mosquitoes in an environment yielding periodic parameters. It is also shown that certain coupled periodic systems of difference equations may be completely decoupled so that the mapping Τ is established by solving a set of scalar equations. Periodic difference equations of extended Ricker type and also rational difference equations with a finite number of delays are also considered by reducing them to equations without delays but with a larger period. Conditions are given guaranteeing the existence and global asymptotic stability of periodic solutions.  相似文献   

17.
Summary The time derivatives of prey and predator populations are assumed to satisfy a set of inequalities, instead of a precise differential equation, reflecting an uncertain environmental and/or lack of knowledge by the modeler. A system of differential equations is found whose solution gives the boundary of a persistent set, which is positive flow invariant for any system satisfying the inequalities. Conditions are given for the persistent set to be bounded away from both axes, which show that resonance effects cannot drive either predator or prey to extinction if that does not happen for an autonomous system satisfying the inequalities. In general predator-prey systems are more persistent when there is strong asymptotic stability, when there is correlation between prey and predator dynamics, when the effect of perturbations is density dependent, and are more persistent under perturbations of the prey than of the predator.  相似文献   

18.
Abstract

The present paper describes a geometrically and physically nonlinear continuum model to study the mechanical behaviour of passive and active skeletal muscle. The contraction is described with a Huxley type model. A Distributed Moments approach is used to convert the Huxley partial differential equation in a set of ordinary differential equations. An isoparametric brick element is developed to solve the field equations numerically. Special arrangements are made to deal with the combination of highly nonlinear effects and the nearly incompressible behaviour of the muscle. For this a Natural Penalty Method (NPM) and an Enhanced Stiffness Method (ESM) are tested. Finally an example of an analysis of a contracting tibialis anterior muscle of a rat is given. The DM-method proved to be an efficient tool in the numerical solution process. The ESM showed the best performance in describing the incompressible behaviour.  相似文献   

19.
We obtain computational results for a new extended spatial neuron model in which the neuronal electrical depolarization from resting level satisfies a cable partial differential equation and the synaptic input current is also a function of space and time, obeying a first order linear partial differential equation driven by a two-parameter random process. The model is first described explicitly with the inclusion of all biophysical parameters. Simplified equations are obtained with dimensionless space and time variables. A standard parameter set is described, based mainly on values appropriate for cortical pyramidal cells. When the noise is small and the mean voltage crosses threshold, a formula is derived for the expected time to spike. A simulation algorithm, involving one-dimensional random processes is given and used to obtain moments and distributions of the interspike interval (ISI). The parameters used are those for a near balanced state and there is great sensitivity of the firing rate around the balance point. This sensitivity may be related to genetically induced pathological brain properties (Rett's syndrome). The simulation procedure is employed to find the ISI distribution for some simple patterns of synaptic input with various relative strengths for excitation and inhibition. With excitation only, the ISI distribution is unimodal of exponential type and with a large coefficient of variation. As inhibition near the soma grows, two striking effects emerge. The ISI distribution shifts first to bimodal and then to unimodal with an approximately Gaussian shape with a concentration at large intervals. At the same time the coefficient of variation of the ISI drops dramatically to less than 1/5 of its value without inhibition.  相似文献   

20.
Several theoretical studies on disease propagation assume that individuals belonging to different groups regarding their health conditions are homogeneously distributed over the space. This is the well-known homogenous mixing assumption, which supports epidemiological models written in terms of ordinary differential or difference equations. Here, we consider that the host population infected by a contagious pathogen is composed by two groups with distinct traits and habits, which can be homogeneously mixed or not. The pathogen propagation is modeled by using an asynchronous probabilistic cellular automaton. Our main goal is to examine how a heterogeneous spatial distribution of these groups affects the endemic state. We noted that homogeneous distribution favors the occurrence of oscillations in the population composition. Surprisingly, we found out that the propagation dynamics of the heterogeneous distribution can also be described by a set of ordinary difference equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号