首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Drosophila circadian rhythms persist in constant darkness (DD). The small ventral Lateral Neurons (s-LNv) mainly control the behavioral circadian rhythm in consortium with the large ventral Lateral Neurons (l-LNv) and dorsal Lateral Neurons (LNd). It is believed that the molecular oscillations of clock genes are the source of this persistent behavior. Indeed the s-LNv, LNd, Dorsal Neurons (DN)-DN2 and DN3 displayed self-sustained molecular oscillations in DD both at RNA and protein levels, except the DN2 oscillates in anti-phase. In contrast, the l-LNv and DN1 displayed self-sustained oscillations at the RNA level, but protein oscillations quickly dampened. Having self-sustained and dampened molecular oscillators together in the DN groups suggested that they play different roles. However, all DN groups seemed to contribute together to the light-dark (LD) behavioral rhythm. The LD entrainment of LN oscillators is achieved through Rhodopsin (RH) and Cryptochrome (CRY). CRY's expression in all DN groups implicates also its role in LD entrainment of DN, like in DN1. However, mutations in cry and glass that did not inflict LD synchronization of the DN2, DN3 oscillator implicate the existence of a novel photoreceptor at least in DN3.  相似文献   

2.
3.
4.
5.
The Drosophila clock proteins timekeeper (CK2αTik) and andante (CK2βAnd) are mutated CK2α and CK2β subunits, respectively.In order to revisit the hypothesis concerning a perturbation of the β/β and/or α/β subunit association, involving the andante mutant we have cloned, expressed and purified the recombinant andante mutant CK2βAnd and a CK2 holoenzyme composed of CK2βAnd and the wildtype CK2α subunit. Biochemical analyses using gel filtration analysis, inhibitor and heat treatment, as well as urea denaturation studies did not yield significant differences between the wildtype holoenzyme (α2β2) and a holoenzyme containing wildtype CK2α and andante CK2βAnd.The timekeeper mutant, CK2αTik has been reported to show a significant reduction in enzyme activity. In order to closely investigate the reason for this reduction in activity, we have also cloned and expressed the human homologue of Drosophila timekeeper. Using a CK2 holoenzyme containing the human timekeeper mutant and the wildtype CK2β subunit we could confirm a strongly reduced activity towards CK2 substrates, but also a significant reduction in the autophosphorylation of the CK2β in the absence of any substrate. Based on a structure-based model we postulate that the mutation M161K in Drosophila (i.e. M163K in human) is responsible for the drastic loss of activity, where the lysine residue may cause improper binding of the tri-nucleotide.  相似文献   

6.
7.
Drosophila CRY is a deep brain circadian photoreceptor   总被引:10,自引:0,他引:10  
cry (cryptochrome) is an important clock gene, and recent data indicate that it encodes a critical circadian photoreceptor in Drosophila. A mutant allele, cry(b), inhibits circadian photoresponses. Restricting CRY expression to specific fly tissues shows that CRY expression is needed in a cell-autonomous fashion for oscillators present in different locations. CRY overexpression in brain pacemaker cells increases behavioral photosensitivity, and this restricted CRY expression also rescues all circadian defects of cry(b) behavior. As wild-type pacemaker neurons express CRY, the results indicate that they make a striking contribution to all aspects of behavioral circadian rhythms and are directly light responsive. These brain neurons therefore contain an identified deep brain photoreceptor, as well as the other circadian elements: a central pace-maker and a behavioral output system.  相似文献   

8.
The mechanism of anticipating long-intervals (16-21 h) was investigated. Rats earned food by interrupting a photobeam in a food trough during 3- or 4-h meals. Intermeal intervals were 16, 21, and 24 h (offset to offset) for independent groups of rats (n=8 per group). After approximately a month of experience with the intermeal intervals, the meals were discontinued. The rate of visiting the food trough increased as a function of time before the meal. When meals were discontinued, visits continued to be periodic. The periodicity was approximately 21 h after 16- and 21-h intermeal intervals and approximately 28 h after 24-h intermeal intervals. These data suggest that long-interval timing is based on a self-sustaining, endogenous oscillator.  相似文献   

9.
10.
11.
A model based on the van der Pol equation has been developed to predict the pattern of adaptation of aircrew and other travellers to rapid time-zone transitions, when the exposure to light cannot be quantified. The parameters of the model include the stiffness (mu) and the intrinsic period (T0), which together define the free-running period, and the external force (F). The parameter values were estimated by using a simplex minimization technique to fit the output from the model to body temperature data from 12 individuals before, and over a 12-day period immediately after, a 10-h eastward transition between London and Sydney. Data were collected at three equally spaced points during each sleep period and at the end of four 45-min rest periods during the day. The fitting procedure enabled the parameters of the temperature rhythm to be estimated after correcting for the masking effect of sleep. The average estimates of mu (0.38 h) and T0 (24.24 h) were close to earlier estimates based on forced desynchronization experiments, and the mean free-running period, calculated from these, was 24.50 h. The mean value of the external force F (0.54) was surprisingly high, and this may reflect the strong outdoor light levels during the days in Sydney. Estimates of phase, based on the model solutions, suggested that 11 subjects adapted by a phase delay and 1 by a phase advance. However, the amplitude of the rhythms was much reduced at times when the phase was changing rapidly. Simulations using the range of the model parameters for the 12 individuals predicted that adaptation to within 1 h after a 10-h eastward transition would be achieved within between 3 and 11 days. However, since these predictions are dependent on the choice of external force, estimates may need to be more conservative in real-life situations when light exposure cannot be measured.  相似文献   

12.
13.
14.
Multiple photopigments entrain the Mammalian circadian oscillator   总被引:1,自引:0,他引:1  
Panda S 《Neuron》2007,53(5):619-621
Circadian rhythms are entrained to the natural day:night cycle. Melanopsin expressed in retinal ganglion cells partially accounts for circadian photoentrainment. Dkhissi-Benyahya et al. demonstrate that medium wavelength opsin (MW-opsin) also plays an important role in the process. Furthermore, they develop a model explaining wavelength-dependent photoentrainment by melanopsin and MW-opsin.  相似文献   

15.
16.
17.
In the cyanobacteria Synechococcus elongatus and Thermosynechococcus elongatus, the KaiA, KaiB and KaiC proteins in the presence of ATP generate a post-translational oscillator (PTO) that can be reconstituted in vitro. KaiC is the result of a gene duplication and resembles a double doughnut with N-terminal CI and C-terminal CII hexameric rings. Six ATPs are bound between subunits in both the CI and CII ring. CI harbors ATPase activity, and CII catalyzes phosphorylation and dephosphorylation at T432 and S431 with a ca. 24-h period. KaiA stimulates KaiC phosphorylation, and KaiB promotes KaiC subunit exchange and sequesters KaiA on the KaiB-KaiC interface in the final stage of the clock cycle. Studies of the PTO protein-protein interactions are convergent in terms of KaiA binding to CII but have led to two opposing models of the KaiB-KaiC interaction. Electron microscopy (EM) and small angle X-ray scattering (SAXS), together with native PAGE using full-length proteins and separate CI and CII rings, are consistent with binding of KaiB to CII. Conversely, NMR together with gel filtration chromatography and denatured PAGE using monomeric CI and CII domains support KaiB binding to CI. To resolve the existing controversy, we studied complexes between KaiB and gold-labeled, full-length KaiC with negative stain EM. The EM data clearly demonstrate that KaiB contacts the CII ring. Together with the outcomes of previous analyses, our work establishes that only CII participates in interactions with KaiA and KaiB as well as with the His kinase SasA involved in the clock output pathway.  相似文献   

18.
19.
20.
When confined to a cage, migratory songbirds exhibit nocturnal migratory restlessness (also called Zugunruhe) during the spring and autumn migratory periods, even though these birds are exclusively diurnal during the remainder of the year. Zugunruhe, which has been demonstrated to be under the direct control of a circannual timer, is characterized by a stereotypic "wing-whirring" behavior while the bird is perched. To elucidate the role played by the circadian system in the regulation of Zugunruhe, the authors studied the activity of garden warblers (Sylvia borin), long-distance nocturnal migrants, under skeleton photoperiods of different lengths and under constant dim light. In 11.5D:1L:10.5D:1L skeleton photoperiods, the authors found that Zugunruhe free-ran in a substantial proportion of birds, while their normal daily activities (e.g., feeding and preening) remained synchronized to 24 h. Some birds expressing Zugunruhe under constant dim light continued to show 2 distinct bouts of activity: one corresponding to daily activities, the other to wing-whirring. In some cases, these 2 bouts crossed while free-running with different periods. Birds expressing Zugunruhe also had significantly longer free-running periods than birds that did not. The study data suggest that the seasonal appearance of Zugunruhe is the result of the interactions of at least 2 circadian oscillators and that it is the phase relationship of these 2 oscillators that determines when nocturnal migratory restlessness is expressed. Furthermore, these data are consistent with the previously proposed internal coincidence hypothesis as a model for the ontogeny of circannual rhythms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号