首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mold Aspergillus giganteus produces a basic, low molecular weight protein showing antifungal properties against economically important plant pathogens, the AFP (Antifungal Protein). In this study, we investigated the mechanisms by which AFP exerts its antifungal activity against Magnaporthe grisea. M. grisea is the causal agent of rice blast, one of the most devastating diseases of cultivated rice worldwide. AFP was purified from the extracellular medium of A. giganteus cultures. The AFP protein was found to induce membrane permeabilization in M. grisea cells. Electron microscopy studies revealed severe cellular degradation and damage of plasma membranes in AFP-treated fungal cells. AFP however failed to induce membrane permeabilization on rice or human HeLa cells. Furthermore, AFP enters the fungal cell and targets to the nucleus, as revealed by co-localization experiments of Alexa-labeled AFP with the SYTOX Green dye. Finally, AFP binds to nucleic acids, including M. grisea DNA. Our results suggest that the combination of fungal cell permeabilization, cell-penetrating ability and nucleic acid-binding activity of AFP determines its potent antifungal activity against M. grisea. These results are discussed in relation to the potential of the AFP protein to enhance crop protection against fungal diseases.  相似文献   

2.
A study of the functional-relevant dynamics of three typical water-soluble proteins, including Calmodulin, Src-tyrosine kinase, and a repressor of the trip operon, has been reported. The application of state-of-art methods of structural bioinformatics allowed us to identify the dynamics seen in the X-ray structures of the investigated proteins associated with their specific biological functions. In addition, technique of normal mode analysis reveals the most probable directions of the functionally relevant motions for all proteins. Importantly, the overall type of the motions observed in the lowest-frequency modes was very similar to the motions seen from the analysis of the X-ray data of the examined macromolecules. Thus, it was shown that the large-scale, as well as local, conformational motions of the proteins might already be predetermined at the level of their tertiary structures. In particular, the determining factor might be the specific fold of the α-helices. Thus, the functionally relevant in vivo dynamics of the investigated proteins might be evolutionarily formed by natural selection at the level of the spatial topology.  相似文献   

3.
Increasing experimental evidence indicates that short polybasic peptides are able to translocate across the membrane of living cells. However, these peptides, often derived from viruses and insects, may induce unspecific effects that could mask the action of their cargoes. Here, we show that a panel of lysine and/or arginine-rich peptides, derived from human proteins involved in cell signalling pathways leading to inflammation, possess the intrinsic ability to cross intact cellular membranes. These peptides are also capable of carrying a biologically active cargo. One of these peptides, encompassing the cell permeable sequence of the Toll-receptor 4 (TLR4) adaptor protein (TIRAP) and modified to carry a dominant-negative domain of the same TIRAP protein, selectively inhibited the production of pro-inflammatory cytokines upon LPS challenge, in in vitro, ex vivo and in vivo experiments. Docking studies indicated that this inhibition might be mediated by the disruption of the recruitment of downstream effector molecules. These results show for the first time the potential of using for therapy cell permeable peptides derived from human proteins involved in disease.  相似文献   

4.
5.
Pharmacologically induced behavioural supersensitivity to apomorphine   总被引:4,自引:0,他引:4  
  相似文献   

6.
7.
  1. Download : Download high-res image (169KB)
  2. Download : Download full-size image
  相似文献   

8.
Proteomics as a subset of applied genomics technologies will be a key area of biology during the first decade or two of the new Millennium, and that it will have major impact, both directly and indirectly, on nutritional science. The aim of this review is to summarize information about general strategies of proteome and its application to important food proteins (plant, animal, and microbial). Methods are also described for protein separation, identification and determination. This article covers papers published within the last decade.  相似文献   

9.
A high percentage of oesophageal adenocarcinomas show an aggressive clinical behaviour with a significant resistance to chemotherapy. Heat-shock proteins (HSPs) and glucose-regulated proteins (GRPs) are molecular chaperones that play an important role in tumour biology. Recently, novel therapeutic approaches targeting HSP90/GRP94 have been introduced for treating cancer. We performed a comprehensive investigation of HSP and GRP expression including HSP27, phosphorylated (p)-HSP27(Ser15), p-HSP27(Ser78), p-HSP27(Ser82), HSP60, HSP70, HSP90, GRP78 and GRP94 in 92 primary resected oesophageal adenocarcinomas by using reverse phase protein arrays (RPPA), immunohistochemistry (IHC) and real-time quantitative RT-PCR (qPCR). Results were correlated with pathologic features and survival. HSP/GRP protein and mRNA expression was detected in all tumours at various levels. Unsupervised hierarchical clustering showed two distinct groups of tumours with specific protein expression patterns: The hallmark of the first group was a high expression of p-HSP27(Ser15, Ser78, Ser82) and low expression of GRP78, GRP94 and HSP60. The second group showed the inverse pattern with low p-HSP27 and high GRP78, GRP94 and HSP60 expression. The clinical outcome for patients from the first group was significantly improved compared to patients from the second group, both in univariate analysis (p = 0.015) and multivariate analysis (p = 0.029). Interestingly, these two groups could not be distinguished by immunohistochemistry or qPCR analysis. In summary, two distinct and prognostic relevant HSP/GRP protein expression patterns in adenocarcinomas of the oesophagus were detected by RPPA. Our approach may be helpful for identifying candidates for specific HSP/GRP-targeted therapies.  相似文献   

10.
To understand normal function of memory studying models of pathological memory decline is essential. The most common form of dementia leading to memory decline is Alzheimer's disease (AD), which is characterized by the presence of neurofibrillary tangles and amyloid plaques in the affected brain regions. Altered production of amyloid beta (Abeta) through sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases seems to be a central event in the molecular pathogenesis of the disease. Thus, the study of the complex interplay of proteins that are involved in or modify Abeta production is very important to gain insight into the pathogenesis of AD. Here, we describe the use of Fluorescence lifetime imaging microscopy (FLIM), a Fluorescence resonance energy transfer (FRET)-based method, to visualize protein-protein-interaction in intact cells, which has proven to be a valuable method in AD research.  相似文献   

11.
12.
Posttranslational modifications of proteins drive a wide variety of cellular processes in eukaryotes, regulating cell growth and division as well as adaptive and developmental processes. With regard to the fungal kingdom, most information about posttranslational modifications has been generated through studies of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, where, for example, the roles of protein phosphorylation, glycosylation, acetylation, ubiquitination, sumoylation, and neddylation have been dissected. More recently, information has begun to emerge for the medically important fungal pathogens Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, highlighting the relevance of posttranslational modifications for virulence. We review the available literature on protein modifications in fungal pathogens, focusing in particular upon the reversible peptide modifications sumoylation, ubiquitination, and neddylation.  相似文献   

13.
Understanding the mechanism of folding of small proteins requires characterization of their starting unfolded states and any partially unfolded states populated during folding. Here, we review what is known from NMR about these states of Im7, a 4-helix bundle protein that folds via an on-pathway intermediate, and show that there is an alignment of non-native structure in urea-unfolded Im7 with the helices of native Im7 that is a consequence of hydrophobic helix-promoting residues also promoting cluster-formation in the unfolded protein. We suggest that this kind of alignment is present in other proteins and is relevant to how native state topology determines folding rates.  相似文献   

14.
The advent of Transverse Relaxation Optimized SpectroscopY (TROSY) and perdeuteration allowed biomolecular NMR spectroscopists to overcome the size limitation barrier (~20 kDa) in de novo structure determination of proteins. The utility of these techniques was immediately demonstrated on large proteins and protein complexes (e.g. GroEL-GroES, ClpP protease, Hsp90-p53, 20S proteasome, etc.). Further, recent methodological developments such as Residual Dipolar Couplings and Paramagnetic Relaxation Enhancement allowed accurate measurement of long-range structural restraints. Additionally, Carr-Purcell-Meiboom-Gill (CPMG), rotating frame relaxation experiments (R1ρ) and saturation transfer experiments (CEST and DEST) created never-before accessibility to the μs–ms timescale dynamic parameters that led to the deeper understanding of biological processes. Meanwhile, the excitement in the field continued with a series of developments in the fast data acquisition methods allowing rapid structural studies on less stable proteins. This review aims to discuss important developments in the field of biomolecular NMR spectroscopy in the recent past, i.e., in the post TROSY era. These developments not only gave access to the structural studies of large protein assemblies, but also revolutionized tools in the arsenal of today’s biomolecular NMR and point to a bright future of biomolecular NMR spectroscopy.  相似文献   

15.
Pharmacologically distinct glutamate receptors on cerebellar granule cells   总被引:9,自引:0,他引:9  
J Drejer  T Honoré  E Meier  A Schousboe 《Life sciences》1986,38(23):2077-2085
Cultured cerebellar granule cells were found to exhibit calcium-dependent release of 3H-D-aspartate when stimulated with excitatory amino acids. L-glutamate and L-aspartate were found to be potent stimulators of 3H-D-aspartate release, D-aspartate was weaker and only minor effects were seen with D-glutamate, quisqualate, kainate, N-methyl-D-aspartate (NMDA) and L-alpha-aminoadipate (L-alpha AA). It was also found that only L-glutamate and L-aspartate showed high affinity for the 3H-L-glutamate binding sites on granule cell membranes. Stimulation by L-glutamate of 3H-D-aspartate release could be blocked by various excitatory amino acid antagonists. From the relative potencies of agonists and antagonists on D-aspartate release it is suggested that cerebellar granule cells express functionally active glutamate receptors with pharmacological characteristics different from all known excitatory amino acid receptors.  相似文献   

16.
The adsorption of proteins at implant surfaces plays a key role in osseointegration and is therefore of great importance in biomaterial science. Laser scanning microscopy (LSM) is described, a method that is used here for the first study of the adsorption of proteins on implant surfaces. These LSM measurements provide information on the surface morphology, and the spatial distribution of adsorbed proteins can be deduced.  相似文献   

17.
MOTIVATION: Mining the biomedical literature for references to genes and proteins always involves a tradeoff between high precision with false negatives, and high recall with false positives. Having a reliable method for assessing the relevance of literature mining results is crucial to finding ways to balance precision and recall, and for subsequently building automated systems to analyze these results. We hypothesize that abstracts and titles that discuss the same gene or protein use similar words. To validate this hypothesis, we built a dictionary- and rule-based system to mine Medline for references to genes and proteins, and used a Bayesian metric for scoring the relevance of each reference assignment. RESULTS: We analyzed the entire set of Medline records from 1966 to late 2001, and scored each gene and protein reference using a Bayesian estimated probability (EP) based on word frequency in a training set of 137837 known assignments from 30594 articles to 36197 gene and protein symbols. Two test sets of 148 and 150 randomly chosen assignments, respectively, were hand-validated and categorized as either good or bad. The distributions of EP values, when plotted on a log-scale histogram, are shown to markedly differ between good and bad assignments. Using EP values, recall was 100% at 61% precision (EP=2 x 10(-5)), 63% at 88% precision (EP=0.008), and 10% at 100% precision (EP=0.1). These results show that Medline entries discussing the same gene or protein have similar word usage, and that our method of assessing this similarity using EP values is valid, and enables an EP cutoff value to be determined that accurately and reproducibly balances precision and recall, allowing automated analysis of literature mining results. .  相似文献   

18.
Wheat-related disorders are well-studied health problems. Knowledge of the composition and amounts of epitopes present in a single wheat sample represents a significant gap, and the detailed wheat proteome datasets now available can provide the necessary information to carry out an estimation of allergen prediction for a single cultivar. The combined use of genome sequence and allergen databases, prediction methodology, and cereal chemistry results in better understanding of the level of toxicity present in the end-products produced from wheat flour. The workflow presented in this review provides information about the number and distribution of epitopes at single protein, or protein fraction, levels. In addition, epitopes present in the highest frequency and harmful proteins expressed in the highest amount can be identified. The “epitope toxicity” value obtained in this way is a significant research output from the analysis of large datasets that can be applied to the food industry.  相似文献   

19.
The crystallization and structure determination of integral membrane proteins remains a difficult task relying on a good understanding of the behavior of the protein for success. To date, membrane protein structures are still far outnumbered by soluble protein structures. Mass spectrometry is a powerful and versatile tool offering deep insights into the state of the integral membrane protein the structuralist intends to crystallize. With appropriate sample preparation methods, it provides information that can sometimes prove critical at various stages of the structure determination process, from protein expression to model building. Moreover, valuable knowledge is gained when the identified structural features underlie important functional aspects. Electrospray and matrix assisted laser desorption ionization (MALDI) methods, however, face a particular challenge when dealing with integral membrane proteins. A MALDI method specifically optimized for membrane protein analysis is presented here, with detailed information on the sample preparation and deposition, as well as guidelines for domain determination by limited proteolysis. MALDI-time of flight mass spectrometry can be used to do a proper inventory of initiation sites, to tailor a protein to a stable, well-folded form, and to evaluate selenomethionine replacement. These approaches are illustrated with a few examples drawn from the structural biology of ion channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号