首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These studies were designed to test if a binary vector containing the gfp, bar and oxalate oxidase genes could transform American chestnut somatic embryos; to see if a desiccation treatment during co-cultivation would affect the transformation frequency of different American chestnut somatic embryo clones; to explore the effects of more rapid desiccation; and to see if the antibiotics used to kill the Agrobacterium were interfering with the regeneration of the somatic embryos. Two days of gradual desiccation was found to significantly enhance transient GFP expression frequency. When this treatment was tested on six American chestnut clones, five were transformed and four of these remained embryogenic. Transformation was confirmed by Southern hybridization. Phenotypically normal transgenic shoots were regenerated and rooted. Vascular tissue specific expression of the oxalate oxidase gene was detected in one transgenic line. Carbenicillin, cefotaxime, and tricarcillin were found to not interfere with the regeneration of transformed embryos.  相似文献   

2.
Protocols for genetic transformation of maritime pine (Pinus pinaster Sol. ex Aiton) embryogenic tissues were developed using the Agrobacterium C58pMP90/pPCV6NFGUS. This is the first report of Agrobacterium-mediated T-DNA integration in P. pinaster confirmed by Southern blot analysis. The omission of casein hydrolysate from culture medium during cocultivation and subsequent subculture was crucial to control Agrobacterium growth. Two different transformation protocols were compared: (1) bacterial drops were spread over embryogenic clumps; (2) a mixture of bacterial and embryogenic cell suspensions was plated on filter paper. The highest frequency of transformation (22 independent transformed lines per g fresh weight, for embryogenic clone 31/668/00) was obtained with Protocol 2. The same basic procedure allowed transformation of embryogenic cell suspensions, which was dependent on subculture age. From 52 hygromycin-resistant independent lines obtained, 47 showed stable uidA gene expression and were PCR-positive for uidA gene and 42 for hpt gene. No residual Agrobacterium was detected in the transformed lines. Transgene integration was achieved using both protocols, as confirmed by Southern hybridization. From 38 (90%) transformed lines successfully cryopreserved and recovered, 71% regrown replicates have maintained the frequency of cell aggregates and early-formed embryos with uidA expression. Maturation of 44 transformed lines gave rise to 3 mature somatic embryos, each one coming from a different transformed line. Our results show the high potential of Protocol 2 for application to different culture systems.  相似文献   

3.
An efficient and reproducible transformation method of sonication- assisted Agrobacterium-mediated transformation (SAAT) was developed for chickpea (Cicer arietinum L.). Agrobacterium tumefaciens (LBA4404) harboring pCAMBIA1305.2 was used to transform decapitated embryo explants of two cultivars of chickpeas. By using a series of co-cultivation, callus induction, shoot initiation and root inducing media, a large number of transgenic plants were recovered. Transient expressions of GUS gene were detected by X-Gluc histochemical assay in transformed tissues. DNA analysis of T0 and T1 plants by PCR and Southern hybridization confirmed the integration of transgenes in initial and next generation transformants in different transgenic lines. The transformation efficiency was more than two times higher in SAAT treatment than simple Agrobacterium without sonication.  相似文献   

4.
The aim of the present work was to study the effect of the developmental stage of the somatic embryos and of the genotype on the genetic transformation of embryogenic lines of European chestnut (Castanea sativa Mill.) and the cryopreservation of the embryogenic lines that are generated. As an initial source of explants in the transformation experiments, it was found that the use of somatic embryos isolated in the globular stage or clumps of 2–3 embryos in globular/heart-shaped stages was more effective (30%) than when embryos at the cotyledonary stage were used (6.7%). All of the seven genotypes tested were transformed, and transformation efficiency was clearly genotype dependent. Three transgenic lines were successfully cryopreserved using the vitrification procedure, and the stable integration of the uidA gene into the transgenic chestnut plants that were regenerated subsequent to cryopreservation was demonstrated.  相似文献   

5.
An efficient method for Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. is described. Embryogenic cell suspension cultures derived from stem internode callus were transformed with Agrobacterium tumefaciens harbouring pCAMBIA 1301 plant expression vector. Transformed colonies were selected on medium supplemented with hygromycin (5 mg/l). Continuously growing transformed cell suspension cultures were initiated from these colonies. Expression of β-glucuronidase in the suspension cultures was analysed by RT-PCR and GUS histochemical staining. GUS specific activity in the transformed suspension cultures was quantified using a MUG-based fluorometric assay. Expression levels of up to 105,870 pmol 4-MU/min/mg of total protein were noted in the transformed suspension cultures and 67,248 pmol 4-MU/min/mg of total protein in the spent media. Stability of GUS expression over a period of 7 months was studied. Plantlets were regenerated from the transformed embryogenic cells. Stable insertion of T-DNA into the host genome was confirmed by Southern blot analysis. This is the first report showing stable high-level expression of a foreign protein using embryogenic cell suspension cultures in S. album. U. K. S. Shekhawat and T. R. Ganapathi contributed equally to this work.  相似文献   

6.
Summary A translational fusion between the enhanced green fluorescent protein (EGFP) and neomycin phosphotransferase (NPTH) genes was used to optimize parameters influencing Agrobacterium-mediated transformation of Vitis vinifera L. cv. Thompson Seedless. The corresponding bifunctional protein produced from this EGFP/NPTH fusion gene allowed for a single promoter to drive expression of both green fluorescence and kanamycin resistance, thus conserving promoter resources and climinating potential promoter-promoter interactions. The fusion gene, driven by either a double cauliflower mosaic virus 35S (CaMV 35S) promoter or a double cassava vein mosaic virus (CsVMV) promoter, was immobilized into Agrobacterium strain EHA 105. Somatic embryos capable of direct secondary embryogenesis were used as target tissues to recover transgenic plants. Simultaneous visualization of GFP fluorescence and kanamycin selection of transgenic cells, tissues, somatic embryos, and plants were achieved. GFP expression and recovery of embryogenic culture lines were used as indicators to optimize transformation parameters. Preculturing of somatic embryos for 7 d on fresh medium prior to transformation minimized Agrobacterium-induced tissue browning/necrosis. Alternatively, browning/necrosis was reduced by adding 1 gl−1 of the antioxidant dithiothreitol (DTT) to post co-cultivation wash media. While combining preculture with antioxidant treatments did not result in a synergistic improvement in response, either treatment resulted in recovery of more stable embryogenic lines than did the control. A 48h co-cultivation period combined with 75 mgl−1 kanamycin in selection medium was optimal. DNA analysis confirmed stable integration of transgenes into the grape genome: 63% had single gene insertions, 27% had two inserts, and 7 and 3% had three and four inserts, respectively. Utilizing optimized procedures, over 1400 stable independent transgenic embryogenic culture lines were obtained, of which 795 developed into whole plants. Transgenic grapevines have exhibited normal vegetative morphology and stable transgene expression for over 5 yr.  相似文献   

7.
Meadow fescue (Festuca pratensis Huds.) is an important cool-season forage grass in Europe and Asia. We developed a protocol for producing meadow fescue transgenic plants mediated by Agrobacterium tumefaciens transformation. Embryogenic calli derived from mature embryos were transformed with A. tumefaciens strain AGL1 carrying the binary vector pDM805, coding for the phosphinothricin acetyltransferase (bar) and β-glucuronidase (uidA) genes. Bialaphos was used as the selective agent throughout all phases of tissue culture. In total, 40 independent transgenic plants were recovered from 45 bialaphos-resistant callus lines and an average transformation efficiency of 2% was achieved. The time frame from infection of embryogenic calli with Agrobacterium to transferring the transgenic plants to the greenhouse was 18 weeks. In a study of 11 BASTA-resistant transgenic lines, the uidA gene was expressed in 82% of the transgenic lines. Southern blot analysis revealed that 82% of the tested lines integrated one or two copies of the uidA gene. C. Gao and J. Liu contributed equally to the work.  相似文献   

8.
Embryogenic cultures from immature zygotic embryos of Pinus radiata seeds were established on semisolid proliferation medium with 2,4-D and BAP. Growing embryogenic masses containing embryonal cells and suspensor cells were subcultured on this media every 2 weeks. After 10 weeks, embryogenic masses (1.5 cm diameter) were transferred to a maturation medium containing ABA. Fully developed somatic embryos were obtained in this medium after 12 weeks. Embryogenic masses were genetically transformed using Agrobacterium tumefaciens. The pBI121 vector containing -glucuronidase (uidA) and the neomycin phosphotransferase (nptll) genes was introduced into this tissue. After co-cultivation with Agrobacterium, the embryogenic tissues were transferred to a selection media containing geneticin and carbenicillin. After 1 month of selection, histochemical assays showed extensive GUS positive activity zones in the transformed embryogenic tissues. Under light microscope, blue crystals were seen inside the embryogenic and suspensor cells, and also completely blue somatic embryos were obtained. The uidA gene was also detected by PCR analysis in genomic DNA isolated from transformed embryogenic tissues. These results indicate stable transformation of P. radiata somatic embryogenic tissues using Agrobacterium-mediated transformation.  相似文献   

9.
A high throughput genetic transformation system in maize has been developed with Agrobacterium tumefaciens mediated T-DNA delivery. With optimized conditions, stable callus transformation frequencies for Hi-II immature embryos averaged approximately 40%, with results in some experiments as high as 50%. The optimized conditions include N6 medium system for Agrobacterium inoculation, co-cultivation, resting and selection steps; no AgNo3 in the infection medium and adding AgNo3 in co-cultivation, resting and selection medium; Agrobacterium concentration at 0.5×109 c.f.u. ml–1 for bacterium inoculation; 100 mg l–1 carbenicillin used in the medium to eliminate Agrobacterium after inoculation; and 3 days for co-cultivation and 4 days for resting. A combination of all of these conditions resulted in establishing a high throughput transformation system. Over 500 T0 plants were regenerated and these plants were assayed by transgene expression and some of them were also analyzed by Southern hybridization. T1 plants were analyzed and transmission of transgenes to the T1 generation was verified. This represents a highly reproducible and reliable system for genetic transformation of maize Hi-II.  相似文献   

10.
A reliable and high-efficiency system of transforming embryogenic callus (EC) mediated by Agrobacterium tumefaciens was developed in cotton. Various aspects of transformation were examined in efforts to improve the efficiency of producing transformants. LBA4404 and C58C3, harboring the pgusBin19 plasmid containing neomycin phosphortransferase II (npt-II) gene as a selection marker, were used for transformation. The effects of Agrobacterium strains, acetosyringone (AS), co-cultivation temperature, co-cultivation duration, Agrobacterium concentration and physiological status of EC on transformation efficiency were evaluated. Strain LBA4404 proved significantly better than C58C3. Agrobacterium at a concentration of 0.5 × 108 cells ml–1 (OD600=0.5) improved the efficiency of transformation. Relatively low co-cultivation temperature (19 °C) and short co-cultivation duration (48 h) were optimal for developing a highly efficient method of transforming EC. Concentration of AS at 50 mg l–1 during co-cultivation significantly increased transformation efficiency. EC growing 15 days after subculture was the best physiological status for transformation. An overall scheme for producing transgenic cotton is presented, through which an average transformation rate of 15% was obtained.  相似文献   

11.
A protocol was developed for Agrobacterium-mediated transformation of embryogenic suspension cultures of cassava. The bacterial strain ABI containing the binary vector pMON977 with the nptII gene as selectable marker and an intron-interrupted uidA gene (encoding β-glucuronidase) as visible marker was used for the experiments. Selection of transformed tissue with paromomycin resulted in the establishment of antibiotic-resistant, β-glucuronidase-expressing lines of friable embryogenic callus, from which embryos and subsequently plants were regenerated. Southern blot analysis demonstrated stable integration of the uidA gene into the cassava genome in five lines of transformed embryogenic suspension cultures and in two plant lines.  相似文献   

12.
Summary Mature embryo axes of the Ohio buckeye were germinated on a medium containing 1 mg gibberellic acid (GA) per 1. Three wk following germination, stem, petiole, and leaf blade tissues were excised and placed on media containing either 1 mg (4.5 μM) 2,4-dichlorophenoxy acetic acid (2,4-D) per 1, 1 mg (4.7 μM) kinetin per 1, 1 mg of both 2,4-D (4.5 μM) and kinetin (4.7 μM per 1, or 2 mg of both 2,4-D (9.1 μM) and kinetin (9.3 μM) per 1. Embryogenic tissue was formed only from stem segments after 2–3 mo. of culture on media containing both 2,4-D and kinetin. Embryogenic tissue could be either maintained on solid medium for proliferation of embryogenic callus or placed in liquid medium for proliferation of embryogenic suspension cultures. For transformation of suspension cultures, tissues were inoculated with Agrobacterium EHA105 containing the binary plasmid Vec035, briefly sonicated, and cultured in the presence of 100 μM acetosyringone for 2 d. To eliminate Agrobacterium, tissues were washed and placed in liquid proliferation medium containing either 500 mg Cefotaxime per 1 or 400 mg TimentinŖ per 1. Selection on 20 mg hygromycin per 1 was initiated 2 wk after inoculation, and after an additional 10 wk, hygromycin-resistant tissue was isolated and separately cultured. Although some hygromycinresistant clones were recovered with no sonication treatment, four to five times more clones were obtained following sonication. Putative transformed clones were confirmed to be transgenic via both histochemical β-glucuronidase (GUS) assay and southern hybridization analyses. Development of transgenic embryos occurred on a growth regulator-free medium containing 3% sucrose. After 2 mo. of embryo development, the embryos were transferred to fresh medium for germination.  相似文献   

13.
An efficient Agrobacterium-mediated genetic transformation method has been developed for the medicinal plant Podophyllum hexandrum Royle, an important source of the anticancer agent podophyllotoxin. Highly proliferating embryogenic cells were infected with Agrobacterium tumefaciens harbouring pCAMBIA 2301, which contains npt II and gusA as selection marker and reporter genes, respectively. The transformed somatic embryos and plantlets were selected on Murashige and Skoog (MS) basal medium containing kanamycin and germination medium, respectively. GUS histochemical analysis, polymerase chain reaction and Southern blot hybridisation confirmed that gusA was successfully integrated and expressed in the P. hexandrum genome. Compared with cefotaxime, 200 mg l?1 timentin completely arrested Agrobacterium growth and favoured somatic embryo development from embryogenic cells. Among the different Agrobacterium strains, acetosyringone concentrations and co-cultivation durations tested, embryogenic callus infected with A. tumefaciens EHA 105 and co-cultivated for 3 days on MS basal medium containing 100 μM acetosyringone proved to be optimal and produced a transformation efficiency of 29.64 % with respect to germinated GUS-positive plantlets. The Agrobacterium-mediated genetic transformation method developed in the present study facilitates the transference of desirable genes into P. hexandrum to improve the podophyllotoxin content and to enhance other useful traits.  相似文献   

14.
Huang X  Huang XL  Xiao W  Zhao JT  Dai XM  Chen YF  Li XJ 《Plant cell reports》2007,26(10):1755-1762
A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0–490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants.  相似文献   

15.
Three different regeneration systems, viz. direct regeneration of adventitious shoot buds from explant, regeneration through callus cultures and somatic embryos were compared to see their effect on transfer of neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) reporter gene (gus) to Morus alba clone M5, through Agrobacterium tumefaciens mediated transformation. Pre-conditioning and co-cultivation durations had a marked effect on transformation frequency. The highest transformation frequency of 18.6% was obtained using direct induction of adventitious shoot buds. Expression and presence of transgene were assayed histochemically and through polymerase chain reaction. Southern analysis of GUS and PCR positive transformants confirmed stable integration of transgenes with two to four copy numbers. The selected transformants showed normal phenotype under in vitro and field conditions.  相似文献   

16.
Transgenic Podophyllum peltatum plants were successfully produced by Agrobacterium tumefaciens-mediated transformation. Embryogenic callus was co-cultivated with Agrobacterium tumefaciens harboring a binary vector pBI 121 carrying β-glucuronidase (GUS) and neomycinphosphotransferase (NPT II) gene. GUS-histochemical analysis revealed that, 50 μM acetosyringone treatments during Agrobacterium infection and 3 d co-cultivation with Agrobacterium showed enhanced transformation efficiency. Percentage of GUS positive callus increased rapidly as the subculture time proceeded on selection medium containing 100 mg dm−3 kanamycin. Kanamycin resistant somatic embryos were formed from embryogenic callus after cultivation with 11.35 μM abscisic acid (ABA) for 3 weeks and then on hormone-free selection medium. Somatic embryos were germinated and converted into plantlets on medium containing 2.89 μM gibberellic acid (GA3). The integration of GUS and NPT II gene into transgenic plants was confirmed by polymerase chain reaction and Southern analysis.  相似文献   

17.
This paper describes the development of a reliable transformation protocol for onion and shallot (Allium cepa L.) which can be used year-round. It is based on Agrobacterium tumefaciens as a vector, with three-week old callus, induced from mature zygotic embryos, as target tissue. For the development of the protocol a large number of parameters were studied. The expression of the uidA gene coding for -glucuronidase was used as an indicator in the optimization of the protocol. Subspecies (onion and shallot) and cultivar were important factors for a successful transformation: shallot was better than onion and for shallot cv. Kuning the best results were obtained. Also, it was found that constantly reducing the size of the calli during subculturing and selection by chopping, thus enhancing exposure to the selective agent hygromycin, improved the selection efficiency significantly. Furthermore, callus induction medium and co-cultivation period showed a significant effect on successful stable transformation. The usage of different Agrobacterium strains, callus ages, callus sources and osmotic treatments during co-cultivation did not influence transformation efficiency. The highest transformation frequency (1.95%), was obtained with shallot cv. Kuning. A total of 11 independent transformed callus lines derived from zygotic embryos were produced: seven lines from shallot and four lines from onion. Large differences in plantlet production were observed among these lines. The best line produced over 90 plantlets. Via PCR the presence of the uidA and hpt (hygromycin phosphotransferase) genes could be demonstrated in these putative transformed plants. Southern hybridization showed that most lines originated from one transformation event. However, in one line plants were obtained indicating the occurrence and rescue of at least three independent transformation events. This suggested that T-DNA integration occurred in different cells within the callus. Most transgenic plants only had one copy of T-DNA integrated into their genomes. FISH performed on 12 plants from two different lines representing two integration events showed that original T-DNA integration had taken place on the distal end of chromosomes 1 or 5. A total of 83 transgenic plants were transferred to the greenhouse and these plants appeared to be diploid and normal in morphology.  相似文献   

18.
Agrobacterium-mediated transformation (AMT) of sugarcane has been limited by low transformation efficiency, high variability between experiments and genotype specificity. We tested combinations of parameters that have been useful in other recalcitrant plant systems, aiming to develop an efficient and reproducible method. Applied to elite sugarcane cultivar Q117, key parameters were (i) minimal handling of callus near the time of co-cultivation, (ii) use of a super-binary helper vector with additional virB,C,G gene copies, and (iii) use of Agrobacterium strain AGL1. Transformation efficiency was in the range 0.5 to 3.5 stably transformed, embryogenic-callus-forming lines per gram fresh weight of co-cultivated callus, over six independent callus batches. Addition of 5 μM copper sulphate to the callus-growth medium appeared beneficial in a single further test. Following selection for aminoglycoside resistance conferred by PUbi-aphA, 87 % of transformed lines that formed embryogenic callus were regenerable to plants. Southern blot analysis of 24 transgenic lines showed 21 % with a single-copy insertion of an intact T-DNA without vector backbone, and a mean transgene copy number of 2.5. Over multiple batches, the AMT protocol approached the transformation efficiency from our routine conditions for particle bombardment of Q117. However, the same parameters were ineffective for AMT of cultivars Q208 and Q172, and yielded a lower transformation efficiency (0.02) with KQ228. As experienced in other systems such as rice, high-efficiency transformation of one recipient genotype may provide useful starting parameters for work towards AMT of additional genotypes.  相似文献   

19.
An innovative and efficient genetic transformation protocol for European chestnut is described in which embryogenic cultures are used as the target material. When somatic embryos at the globular or early-torpedo stages were cocultured for 4 days with Agrobacterium tumefaciens strain EHA105 harbouring the pUbiGUSINT plasmid containing marker genes, a transformation efficiency of 25% was recorded. Murashige and Skoog culture medium containing 150 mg/l of kanamycin was used as the selection medium. The addition of acetosyringone was detrimental to the transformation efficiency. Transformation was confirmed by a histochemical -glucuronidase (GUS ) assay, PCR and Southern blot analyses for the uidA (GUS) and nptII (neomycin phosphotransferase II) genes. At present, 93 GUS-positive chestnut embryogenic lines are being maintained in culture. Low germination rates (6.3%) were recorded for the transformed somatic embryos. The presence of the transferred genes in leaves and shoots derived from the germinated embryos was also verified by the GUS assay and PCR analysis.  相似文献   

20.
Pine embryogenic tissue derived from immature zygotic embryos may consist of multiple genotypes due to simple polyembryony. To test this hypothesis, megagametophytes with intact zygotic embryos were cultured from immature loblolly pine (Pinus taeda L.) seeds of clone WV42 control pollinated with a 1:1:1 pollen mix of clones WV44, WV47, and WV48. Each pollen parent contained a marker allele at one or more of the following loci: aconitase, malic dehydrogenase, 6-phosphogluconate dehydrogenase, and shikimate dehydrogenase, allowing determination of the paternal parent. After two to four weeks in culture, embryogenic tissue derived from zygotic embryos extruded from megagametophytes was separated into individual embryos and sectors of embryogenic tissue. The paternal genotype of each resulting cell line was determined by starch gel electrophoresis. Three of thirty-six explants produced multiple cell lines with genotypic differences among the cell lines within each explant. Our results unequivocally show that it is possible to initiate embryogenic tissue from more than one zygotic embryo of a loblolly pine seed and that the resulting cell lines may be genetically different.Abbreviations ACO aconitase - MDH malic dehydrogenase - SKDH shikimate dehydrogenase - 6PGD 6-phosphogluconate dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号