首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Serum-deprived Swiss 3T3 fibroblasts constitutively form stress fibers at their edges. These fibers move centripetally towards the perinuclear region where they disassemble. Serum stimulation causes shortening of fibers in a manner suggesting active actin-myosin-based contraction (Giuliano, K.A. and D.L. Taylor. 1990. Cell Motil. and Cytoskeleton. 16:14-21). To elucidated the role of actin-based gel structure in these movements, we examined the effects of disrupting actin organization with cytochalasin. Serum-deprived fibroblasts were microinjected with rhodamine analogs of actin or myosin II and fiber dynamics were monitored with a multimode light microscope workstation using video-enhanced contrast and fluorescence modes. When cells were perfused with greater than or equal to 3 microM cytochalasin B or 0.5 microM cytochalasin D, formation and transport of stress fibers were reversibly inhibited, and rapid and immediate shortening of existing fibers was induced. Quantification of actin and myosin II fluorescence associated with individual shortening fibers demonstrated that fluorescence per length of fiber increased for both components, suggesting sliding filament contraction. However, there was also a net loss of both actin and myosin II from fibers as they shortened, indicating a self-destructive process. Loss of material from fibers coupled with increased overlap of actin and myosin II remaining in the fibers suggested that contraction could be induced not only by increasing the force exerted by contractile motors, but also by decreasing gel structure through partial solation. Finally, cytochalasin accelerated contraction of actin-myosin-based gels reconstituted from purified proteins in the absence of myosin-based regulation, further supporting solation-contraction coupling as a possible mechanism for modulating cytoplasmic contractility (Taylor, D.L. and M. Fechheimer. 1982. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 299:185-197).  相似文献   

2.
The membrane potential of isolated muscle fibers was controlled with a two-electrode voltage clamp, and the radial extent of contraction elicited by depolarizing pulses of increasing magnitude was observed microscopically. Depolarizations of the fiber surface only 1–2 mv greater than the contraction threshold produced shortening throughout the entire cross-section of the muscle fiber. The radial spread of contraction was less effective in fibers exposed to tetrodotoxin or to a bathing medium with a greatly reduced sodium concentration. The results provide evidence that depolarization of a muscle fiber produces an increase in sodium conductance in the T tubule membrane and that the resultant sodium current contributes to the spread of depolarization along the T system.  相似文献   

3.
Simultaneous stretching and contraction of stress fibers in vivo   总被引:2,自引:0,他引:2       下载免费PDF全文
To study the dynamics of stress fiber components in cultured fibroblasts, we expressed alpha-actinin and the myosin II regulatory myosin light chain (MLC) as fusion proteins with green fluorescent protein. Myosin activation was stimulated by treatment with calyculin A, a serine/threonine phosphatase inhibitor that elevates MLC phosphorylation, or with LPA, another agent that ultimately stimulates phosphorylation of MLC via a RhoA-mediated pathway. The resulting contraction caused stress fiber shortening and allowed observation of changes in the spacing of stress fiber components. We have observed that stress fibers, unlike muscle myofibrils, do not contract uniformly along their lengths. Although peripheral regions shortened, more central regions stretched. We detected higher levels of MLC and phosphorylated MLC in the peripheral region of stress fibers. Fluorescence recovery after photobleaching revealed more rapid exchange of myosin and alpha-actinin in the middle of stress fibers, compared with the periphery. Surprisingly, the widths of the myosin and alpha-actinin bands in stress fibers also varied in different regions. In the periphery, the banding patterns for both proteins were shorter, whereas in central regions, where stretching occurred, the bands were wider.  相似文献   

4.
Summary The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations.Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with antineonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition, (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested.Taken together, the data show that in adult rat solcus, slow tonic and neonatal myosin heavy, chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

5.
The actin-based cytomatrix generates stress fibers containing a host of proteins including actin and myosin II and whose dynamics are easily observable in living cells. We developed a dual-radioisotope-based assay of myosin II phosphorylation and applied it to serum-deprived fibroblasts treated with agents that modified the dynamic distribution of stress fibers and/or altered the phosphorylation state of myosin II. Serum-stimulation induced an immediate and sustained increase in the level of myosin II heavy chain (MHC) and 20-kDa light chain (LC20) phosphorylation over the same time course that it caused stress fiber contraction. Cytochalasin D, shown to cause stress fiber fragmentation and contraction, had little effect on myosin II phosphorylation. Okadaic acid, a protein phosphatase inhibitor, induced a delayed but massive cell shortening preceded by a large increase in MHC and LC20 phosphorylation. Staurosporine, a kinase inhibitor known to effect dissolution but not contraction of stress fibers, immediately caused an increase in MHC and LC20 phosphorylation followed within minutes by the dephosphorylation of LC20 to a level below that of untreated cells. We therefore propose that the contractility of the actin-based cytomatrix is regulated by both modulating the activity of molecular motors such as myosin II and by altering the gel structure in such a manner as to either resist or yield to the tension applied by the motors.  相似文献   

6.
To understand the roles of Rho-kinase and myosin light chain kinase (MLCK) for the contraction and organization of stress fibers, we treated cultured human foreskin fibroblasts with several MLCK, Rho-kinase, or calmodulin inhibitors and analyzed F-actin organization in the cells. Some cells were transfected with green fluorescent protein (GFP)-labeled actin, and the effects of inhibitors were also studied in these living cells. The Rho-kinase inhibitors Y-27632 and HA1077 caused disassembly of stress fibers and focal adhesions in the central portion of the cell within 1 h. However, stress fibers located in the periphery of the cell were not severely affected by the Rho-kinase inhibitors. When these cells were washed with fresh medium, the central stress fibers and focal adhesions gradually reformed, and within 3 h the cells were completely recovered. ML-7 and KT5926 are specific MLCK inhibitors and caused disruption and/or shortening of peripheral stress fibers, leaving the central fibers relatively intact even though their number was reduced. The calmodulin inhibitors W-5 and W-7 gave essentially the same results as the MLCK inhibitors. The MLCK and calmodulin inhibitors, but not the Rho-kinase inhibitors, caused cells to lose the spread morphology, indicating that the peripheral fibers play a major role in keeping the flattened state of the cell. When stress fiber models were reactivated, the peripheral fibers contracted before the central fibers. Thus our study shows that there are at least two different stress fiber systems in the cell. The central stress fiber system is dependent more on the activity of Rho-kinase than on that of MLCK, while the peripheral stress fiber system depends on MLCK.  相似文献   

7.
The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations. Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with anti-neonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested. Taken together, the data show that in adult rat soleus, slow tonic and neonatal myosin heavy chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

8.
This study examines the myosin isozyme heterogeneity (in terms of both alkali light chains and myosin heavy chains) among skeletal muscle fibers of the rabbit and correlates these isozyme differences with the differences in a contractile property, the velocity of unloaded shortening, of the fibers. The mean velocities of unloaded shortening (pCa 4.3; 12 degrees C) were as follows: psoas IIb fibers, 2.07 fiber lengths/s (n = 25); tibialis anterior (IIb) fibers, 1.63 fiber lengths/s (n = 18); vastus intermedius IIa fibers, 0.98 fiber lengths/s (n = 15); fibers (IIa) from chronically stimulated tibialis anterior, 0.86 fiber lengths/s (n = 16). Peptide maps of the myosins showed that the myosin heavy chains of the two groups of IIb fibers were indistinguishable from each other, but different from the heavy chains of the IIa fibers. However, the difference in maximal shortening velocity of the two groups of IIb fibers was correlated with a difference in the alkali light chain ratio deduced from the intensity ratio of myosin isoforms separated by gel electrophoresis under nondenaturing conditions. The vastus intermedius (IIa) and chronically stimulated tibialis anterior (IIa) fibers were indistinguishable in terms of either velocities of unloaded shortening or myosin isozyme contents. Soleus fibers contained only slow-twitch myosin. Thus, among fibers that contained a variety of myosin isozymes, differences in shortening velocities were correlated with the alkali light chain ratio, myosin heavy chain type, or a combination of both.  相似文献   

9.
Summary The sensory innervation of 46 poles of long chain intrafusal muscle fibers was studied histochemically by staining for NADH-TR in periodic, 8 m thick transverse sections of cat muscle spindles. Each long chain fiber carried terminals of the primary sensory axon, and 23 of the fiber poles also displayed secondary sensory endings. With the NADH-TR reaction there was no apparent difference in the cross-sectional appearance of sensory endings on the long chain and on other nuclear chain fibers. However, the contact area between the secondary endings and the muscle fiber tended to be shorter on the long chain than on the neighboring chain fibers of shorter polar length. This was also the case for one long chain fiber in which the sensory innervation was examined in serial, 1 m thick sections stained with toluidine blue. Discharges of the secondary sensory axons in cat spindles may be affected more by contraction of the shorter nuclear chain fibers than by activation of the long chain fibers.  相似文献   

10.
Reorganization of actin filament bundles in living fibroblasts   总被引:20,自引:18,他引:2       下载免费PDF全文
《The Journal of cell biology》1984,99(4):1478-1485
We investigated how actin bundles assemble, disassemble, and reorganize during cell movement. Living chick embryonic fibroblasts were microinjected with actin molecules that had been fluorescently labeled with tetramethylrhodamine. We found that the fluorescent analogue of actin can be used successfully by both existing and newly formed cellular structures. Using time-lapse photography coupled to image- intensified fluorescence microscopy, we were able to detect various patterns of reorganization in motile cells. Assembly of stress fibers occurred near both the leading and the trailing ends of the cell. The initial structure appeared as discrete spots that subsequently extended into stress fibers. The extension occurred unidirectionally. The site of initiation near the leading edge remained stationary relative to the substrate during subsequent cell advancement. However, the orientation of the fiber could change according to the direction of cell movement. In addition, existing stress fibers could merge or fragment. The shortening of stress fibers can occur from either end of the fiber. Shortening from the proximal end (centrifugal shortening) was accompanied by a decrease in fluorescence intensity, as if the bundle were disassembling, and usually led to the total disappearance of the bundle. Shortening from the distal end (centripetal shortening), on the other hand, is usually accompanied by an increase in fluorescence intensity at the distal end of the bundle, as if this end had pulled loose from its attachment and retracted toward the center of the cell. Besides stress fibers, arc-like actin bundles have also been detected in spreading cells. These observations can explain how the organization of actin bundles coordinates with cell movement, and how stress fibers reach a highly regular pattern in static cells.  相似文献   

11.
Rho-kinase--mediated contraction of isolated stress fibers   总被引:12,自引:0,他引:12       下载免费PDF全文
It is widely accepted that actin filaments and the conventional double-headed myosin interact to generate force for many types of nonmuscle cell motility, and that this interaction occurs when the myosin regulatory light chain (MLC) is phosphorylated by MLC kinase (MLCK) together with calmodulin and Ca(2+). However, recent studies indicate that Rho-kinase is also involved in regulating the smooth muscle and nonmuscle cell contractility. We have recently isolated reactivatable stress fibers from cultured cells and established them as a model system for actomyosin-based contraction in nonmuscle cells. Here, using isolated stress fibers, we show that Rho-kinase mediates MLC phosphorylation and their contraction in the absence of Ca(2+). More rapid and extensive stress fiber contraction was induced by MLCK than was by Rho-kinase. When the activity of Rho-kinase but not MLCK was inhibited, cells not only lost their stress fibers and focal adhesions but also appeared to lose cytoplasmic tension. Our study suggests that actomyosin-based nonmuscle contractility is regulated by two kinase systems: the Ca(2+)-dependent MLCK and the Rho-kinase systems. We propose that Ca(2+) is used to generate rapid contraction, whereas Rho-kinase plays a major role in maintaining sustained contraction in cells.  相似文献   

12.
Light diffraction patterns produced by single skeletal muscle fibers and small fiber bundles of Rana pipiens semitendinosus have been examined at rest and during tetanic contraction. The muscle diffraction patterns were recorded with a vidicon camera interfaced to a minicomputer. Digitized video output was analyzed on-line to determine mean sarcomere length, line intensity, and the distribution of sarcomere lengths. The occurrence of first-order line intensity and peak amplitude maxima at approximately 3.0 mum is interpreted in terms of simple scattering theory. Measurements made along the length of a singel fiber reveal small variations in calculated mean sarcomere length (SD about 1.2%) and its percent dispersion (2.1% +/- 0.8%). Dispersion in small multifiber preparations increases approximately linearly with fiber number (about 0.2% per fiber) to a maximum of 8-10% in large bundles. Dispersion measurements based upon diffraction line analysis are comparable to SDs calculated from length distribution histograms obtained by light micrography of the fiber. First-order line intensity decreases by about 40% during tetanus; larger multifibered bundles exhibit substantial increases in sarcomere dispersion during contraction, but single fibers show no appreciable dispersion change. These results suggest the occurrence of asynchronous static or dynamic axial disordering of thick filaments, with a persistence in long range order of sarcomere spacing during contraction in single fibers.  相似文献   

13.
Stress fiber dynamics as probed by antibodies against myosin   总被引:3,自引:0,他引:3  
The dynamics of microfilament bundles (stress fibers) in tissue culture cells were studied by microinjecting an affinity-purified polyclonal antibody against chicken gizzard myosin. This antibody cross-reacted exclusively with the light chains of nonmuscle myosin and should therefore bind to the head portion of myosin molecules. When injected in high concentrations (13-26 mg/ml), it disrupted stress fibers in a high proportion (60-80%) of rat and chicken embryo fibroblasts, as well as in PtK2 cells. Myosin was found collected in large aggregates probably comprising protein: antibody precipitates, while actin and alpha-actinin were not localized in any defined structures in stress fiber depleted cells. Fibroblasts rounded up, probably because of lack of tension-generating microfilament bundles. After several hours, stress fibers were seen to regrow again in the afflicted cells, even when myosin precipitates and excess antibody were still present. The extent of stress fiber disruption and the time point of their reappearance were dependent on the concentration of the injected antibody.  相似文献   

14.
Luo Y  Xu X  Lele T  Kumar S  Ingber DE 《Journal of biomechanics》2008,41(11):2379-2387
Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction forces on the extracellular matrix. Individual stress fibers are molecular bundles composed of parallel actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely how this mechanical behavior arises from this complex supramolecular arrangement of protein components remains unclear. Here we show that computationally modeling a stress fiber as a multi-modular tensegrity network can predict several key behaviors of stress fibers measured in living cells, including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical strain of a puncture wound within the fiber. The tensegrity model can also explain how they simultaneously experience passive tension and generate active contraction forces; in contrast, a tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors and represent a new handle on multi-scale modeling of living materials.  相似文献   

15.
H Sosa  D Popp  G Ouyang    H E Huxley 《Biophysical journal》1994,67(1):283-292
We have set up a system to rapidly freeze muscle fibers during contraction to investigate by electron microscopy the ultrastructure of active muscles. Glycerinated fiber bundles of rabbit psoas muscles were frozen in conditions of rigor, relaxation, isometric contraction, and active shortening. Freezing was carried out by plunging the bundles into liquid ethane. The frozen bundles were then freeze-substituted, plastic-embedded, and sectioned for electron microscopic observation. X-ray diffraction patterns of the embedded bundles and optical diffraction patterns of the micrographs resemble the x-ray diffraction patterns of unfixed muscles, showing the ability of the method to preserve the muscle ultrastructure. In the optical diffraction patterns layer lines up to 1/5.9 nm-1 were observed. Using this method we have investigated the myofilament lengths and concluded that there are no major changes in length in either the actin or the myosin filaments under any of the conditions explored.  相似文献   

16.
The regulation of vertebrate muscle contraction with respect to the role of the different subunits of myosin remains somewhat uncertain. One approach to gaining a better understanding of the molecular basis of contraction is to study developing muscle which undergoes changes in myosin isozyme composition and contractile properties during the normal course of maturation. The present study utilizes single fibers from psoas muscles of rabbits at several ages as a model system for fast-twitch muscle development. This approach eliminates the inherent problems of interpreting results from studies on whole muscles which usually contain heterogeneous fiber types with respect to contractile properties and isoenzyme composition. Maximum velocity of shortening and tension-generating ability of individual fibers were measured and the myosin heavy chain composition of the same fibers was examined using an ultrasensitive sodium dodecyl sulfate-polyacrylamide gel system. The results indicate that 1) with regard to contractile properties, there is a transitional period from slow to fast shortening velocities within the first postnatal month; 2) a strong, positive correlation exists between the speed of shortening and tension-generating ability of individual postnatal day 7 fibers, suggesting that as more myosin is incorporated in these developing fibers it is of the fast type; and 3) there is a wide variation in maximum velocity of shortening among postnatal day 7 psoas fibers which is also a time when a mixture of heavy chain isoforms characterizes the myosin composition of single muscle fibers.  相似文献   

17.
Vascular smooth muscle cell contraction and relaxation are directly related to the phosphorylation state of the regulatory myosin light chain. Myosin light chains are dephosphorylated by myosin phosphatase, leading to vascular smooth muscle relaxation. Myosin phosphatase is localized not only at actin-myosin stress fibers where it dephosphorylates myosin light chains, but also in the cytoplasm and at the cell membrane. The mechanisms by which myosin phosphatase is targeted to these loci are incompletely understood. We recently identified myosin phosphatase-Rho interacting protein as a member of the myosin phosphatase complex that directly binds both the myosin binding subunit of myosin phosphatase and RhoA and is localized to actin-myosin stress fibers. We hypothesized that myosin phosphatase-Rho interacting protein targets myosin phosphatase to the contractile apparatus to dephosphorylate myosin light chains. We used RNA interference to silence the expression of myosin phosphatase-Rho interacting protein in human vascular smooth muscle cells. Myosin phosphatase-Rho interacting protein silencing reduced the localization of the myosin binding subunit to stress fibers. This reduction in stress fiber myosin phosphatase-Rho interacting protein and myosin binding subunit increased basal and lysophosphatidic acid-stimulated myosin light chain phosphorylation. Neither cellular myosin phosphatase, myosin light chain kinase, nor RhoA activities were changed by myosin phosphatase-Rho interacting protein silencing. Furthermore, myosin phosphatase-Rho interacting protein silencing resulted in marked phenotypic changes in vascular smooth muscle cells, including increased numbers of stress fibers, increased cell area, and reduced stress fiber inhibition in response to a Rho-kinase inhibitor. These data support the importance of myosin phosphatase-Rho interacting protein-dependent targeting of myosin phosphatase to stress fibers for regulating myosin light chain phosphorylation state and morphology in human vascular smooth muscle cells.  相似文献   

18.
We previously reported that zinc thiolate signaling contributes to hypoxic contraction of small, nonmuscularized arteries of the lung. The present studies were designed to investigate mechanisms by which hypoxia-released zinc induces contraction in isolated pulmonary endothelial cells and to delineate the signaling pathways involved in zinc-mediated changes in the actin cytoskeleton. We used fluorescence-based imaging to show that hypoxia induced time-dependent increases in actin stress fibers that were reversed by the zinc chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN). We further showed that hypoxia-induced phosphorylation of the contractile protein myosin light chain (MLC) and assembly of actin stress fibers were each TPEN sensitive. Hypoxia and zinc-induced inhibition of MLC phosphatase (MLCP) were independent of the regulatory subunit (MYPT1) of MLCP, and therefore hypoxia-released zinc likely inhibits MLCP at its catalytic (PP1) subunit. Inhibition of PKC by Ro-31-8220 and a dominant-negative construct of PKC-ε attenuated hypoxia-induced contraction of isolated pulmonary endothelial cells. Furthermore, zinc-induced phosphorylation of MLC (secondary to inhibition of MLCP) was PKC dependent, and hypoxia-released zinc promoted the phosphorylation of the PKC substrate, CPI-17. Collectively, these data suggest a link between hypoxia, elevations in labile zinc, and activation of PKC, which in turn acts through CPI-17 to inhibit MLCP activity and promote MLC phosphorylation, ultimately inducing stress fiber formation and endothelial cell contraction.  相似文献   

19.
Phase-dense stress fibers in cultured non-muscle cells from neonatal rat ventricles were severed using the 532 nm wavelength of a Q-switched Nd Yag laser microbeam. The breaks were confirmed using anti-actin antibodies and Coomassie blue staining. SEM showed that no visible membrane damage resulted from the laser. Following irradiation, severed stress fiber ends quickly retracted 3–5 μm apart and repaired, averaging 12.2 min, in 84% of the control cells. Most fibers not repairing had much longer, > 10 μm, retraction distances. Disruption of microfilaments by cytochalasin B (CB) or chlorpromazine (CPZ) resulted in increased retraction distances and a dose-dependent decrease in the ability of stress fibers to repair. Fibers not repairing in CB or CPZ consistently displayed directional depolymerizations of fiber segments on the proximal side of the cut relative to the cell center and, at the extreme, condensations of stress fiber material into ‘knob-like’ structures. It appears to us that increased retraction distances might reflect CB or CPZ disruption of stress fiber-membrane attachments. Directional depolymerization suggests that stress fibers are unipolar structures, yet we failed to see any directional repair. Microtubule removal by colcemid, vinblastine, or podophyllotoxin resulted in a doubling of stress fiber repair rates. This in vivo evidence suggests that a relationship does exist between stress fibers and microtubules. Finally, inhibition of protein synthesis by 95% had little effect upon fiber repair, therefore indicating that protein synthesis is not necessary for stress fiber repair.  相似文献   

20.
Contractile function of single muscle fibers after hindlimb suspension   总被引:1,自引:0,他引:1  
The purpose of this investigation was to determine how muscle atrophy produced by the hindlimb suspension (HS) model alters the contractile function of slow- and fast-twitch single muscle fibers. After 2 wk of HS, small bundles of fibers were isolated from the soleus and the deep and superficial regions of the lateral and medial heads of the gastrocnemius, respectively. The bundles were placed in skinning solution and stored at -20 degrees C until studied. Single fibers were isolated and suspended between a motor arm and force transducer, the functional properties were studied, and subsequently the fiber type was established by myosin heavy chain (MHC) analysis on 1-D sodium dodecyl sulfate polyacrylamide gel electrophoresis. After HS, slow-twitch fibers of the soleus showed a significant reduction in fiber diameter (68 +/- 2 vs. 41 +/- 1 micron) and peak tension (1.37 +/- 0.01 vs. 0.99 +/- 0.06 kg/cm2), whereas the maximal shortening speed (Vmax) increased [1.49 +/- 0.11 vs. 1.92 +/- 0.14 fiber lengths (FL)/s]. A histogram showed two populations of fibers: one with Vmax values identical to control slow-twitch fibers and a second with significantly elevated Vmax values. This latter group frequently contained both slow and fast MHC protein isoforms. The pCa-force relation of the soleus slow-twitch fibers was shifted to the right; consequently, the free Ca2+ required for the onset of tension and for 50% of peak tension was significantly higher after HS. Slow-twitch fibers isolated from the gastrocnemius after HS showed a significant reduction in diameter (67 +/- 4 vs. 44 +/- 3 microns) and peak tension (1.2 +/- 0.06 vs. 0.96 +/- 0.07 kg/cm2), but Vmax was unaltered (1.70 +/- 0.13 vs. 1.65 +/- 0.18 FL/s). Fast-twitch fibers from the red gastrocnemius showed a significant reduction in diameter (59 +/- 2 vs. 49 +/- 3 microns) but no change in peak tension or Vmax. Fast-twitch fibers from the white superficial region of the medial head of the gastrocnemius were unaffected by HS. Collectively, these data suggest that the effects of HS on fiber function depend on the fiber type and location. Both slow-twitch type I and fast-twitch type IIa fibers atrophied; however, only slow-twitch fibers showed a decline in peak tension, and the increase in Vmax was restricted to a subpopulation of slow-twitch soleus fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号