首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biomass crops grown on marginal soils are expected to fuel an emerging bioenergy industry in the United States. Bioenergy crop choice and position in the landscape could have important impacts on a range of ecosystem services, including natural pest-suppression (biocontrol services) provided by predatory arthropods. In this study we use predation rates of three sentinel crop pests to develop a biocontrol index (BCI) summarizing pest-suppression potential in corn and perennial grass-based bioenergy crops in southern Wisconsin, lower Michigan, and northern Illinois. We show that BCI is higher in perennial grasslands than in corn, and increases with the amount of perennial grassland in the surrounding landscape. We develop an empirical model for predicting BCI from information on energy crop and landscape characteristics, and use the model in a qualitative assessment of changes in biocontrol services for annual croplands on prime agricultural soils under two contrasting bioenergy scenarios. Our analysis suggests that the expansion of annual energy crops onto 1.2 million ha of existing perennial grasslands on marginal soils could reduce BCI between -10 and -64% for nearly half of the annual cropland in the region. In contrast, replacement of the 1.1 million ha of existing annual crops on marginal land with perennial energy crops could increase BCI by 13 to 205% on over half of the annual cropland in the region. Through comparisons with other independent studies, we find that our biocontrol index is negatively related to insecticide use across the Midwest, suggesting that strategically positioned, perennial bioenergy crops could reduce insect damage and insecticide use on neighboring food and forage crops. We suggest that properly validated environmental indices can be used in decision support systems to facilitate integrated assessments of the environmental and economic impacts of different bioenergy policies.  相似文献   

2.
New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society’s energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.  相似文献   

3.
Suggestions that novel, non‐food, dedicated biomass crops used to produce bioenergy may provide opportunities to diversify and reinstate biodiversity in intensively managed farmland have not yet been fully tested at the landscape scale. Using two of the largest, currently available landscape‐scale biodiversity data sets from arable and biomass bioenergy crops, we take a taxonomic and functional trait approach to quantify and contrast the consequences for biodiversity indicators of adopting dedicated biomass crops on land previously cultivated under annual, rotational arable cropping. The abundance and community compositions of biodiversity indicators in fields of break and cereal crops changed when planted with the dedicated biomass crops, miscanthus and short rotation coppiced (SRC) willow. Weed biomass was consistently greater in the two dedicated biomass crops than in cereals, and invertebrate abundance was similarly consistently higher than in break crops. Using canonical variates analysis, we identified distinct plant and invertebrate taxa and trait‐based communities in miscanthus and SRC willows, whereas break and cereal crops tended to form a single, composite community. Seedbanks were shown to reflect the longer term effects of crop management. Our study suggests that miscanthus and SRC willows, and the management associated with perennial cropping, would support significant amounts of biodiversity when compared with annual arable crops. We recommend the strategic planting of these perennial, dedicated biomass crops in arable farmland to increase landscape heterogeneity and enhance ecosystem function, and simultaneously work towards striking a balance between energy and food security.  相似文献   

4.
Native perennial bioenergy crops can mitigate greenhouse gases (GHG) by displacing fossil fuels with renewable energy and sequestering atmospheric carbon (C) in soil and roots. The relative contribution of root C to net GHG mitigation potential has not been compared in perennial bioenergy crops ranging in species diversity and N fertility. We measured root biomass, C, nitrogen (N), and soil organic carbon (SOC) in the upper 90 cm of soil for five native perennial bioenergy crops managed with and without N fertilizer. Bioenergy crops ranged in species composition and were annually harvested for 6 (one location) and 7 years (three locations) following the seeding year. Total root biomass was 84% greater in switchgrass (Panicum virgatum L.) and a four‐species grass polyculture compared to high‐diversity polycultures; the difference was driven by more biomass at shallow soil depth (0–30 cm). Total root C (0–90 cm) ranged from 3.7 Mg C ha?1 for a 12‐species mixture to 7.6 Mg C ha?1 for switchgrass. On average, standing root C accounted for 41% of net GHG mitigation potential. After accounting for farm and ethanol production emissions, net GHG mitigation potential from fossil fuel offsets and root C was greatest for switchgrass (?8.4 Mg CO2e ha?1 yr?1) and lowest for high‐diversity mixtures (?4.5 Mg CO2e ha?1 yr?1). Nitrogen fertilizer did not affect net GHG mitigation potential or the contribution of roots to GHG mitigation for any bioenergy crop. SOC did not change and therefore did not contribute to GHG mitigation potential. However, associations among SOC, root biomass, and root C : N ratio suggest greater long‐term C storage in diverse polycultures vs. switchgrass. Carbon pools in roots have a greater effect on net GHG mitigation than SOC in the short‐term, yet variation in root characteristics may alter patterns in long‐term C storage among bioenergy crops.  相似文献   

5.
Biofuels obtained from biomass have the potential to replace a substantial fraction of petroleum-based hydrocarbons that contribute to carbon emissions and are limited in supply. With the ultimate goal to maximize biomass yield for biofuel production, this review aims to evaluate prospects of different hybrid breeding schemes to optimally exploit heterosis for biomass yield in perennial ryegrass (Lolium perenne L.) and switchgrass (Panicum virgatum), two perennial model grass species for bioenergy production. Starting with a careful evaluation of current population and synthetic breeding methods, we address crucial topics to implement hybrid breeding, such as the availability and development of heterotic groups, as well as biological mechanisms for hybridization control such as self-incompatibility (SI) and male sterility (MS). Finally, we present potential hybrid breeding schemes based on SI and MS for the two bioenergy grass species, and discuss how molecular tools and synteny can be used to transfer relevant information for genes controlling these biological mechanisms across grass species.  相似文献   

6.
Reducing the use of insecticides is an important issue for agriculture today. Sowing wildflower strips along field margins or within crops represents a promising tool to support natural enemy populations in agricultural landscapes and, thus, enhance conservation biological control. However, it is important to sow appropriate flower species that attract natural enemies efficiently. The presence of prey and hosts may also guide natural enemies to wildflower strips, potentially preventing them from migrating into adjacent crops. Here, we assessed how seven flower traits, along with the abundance of pollen beetles (Meligethes spp., Coleoptera: Nitidulidae) and true weevils (Ceutorhynchus spp., Coleoptera: Curculionidae), affect the density of parasitoids of these two coleopterans in wildflower strips sown in an oilseed rape field in Gembloux (Belgium). Only flower traits, not host (i.e. pollen beetles and true weevils) abundance, significantly affected the density of parasitoids. Flower colour, ultraviolet reflectance and nectar availability were the main drivers affecting parasitoids. These results demonstrate how parasitoids of oilseed rape pests react to flower cues under field conditions. Similar analyses on the pests and natural enemies of other crops are expected to help to develop perennial flower mixtures able to enhance biological control throughout a rotation system.  相似文献   

7.
Functional Genomics of Drought Tolerance in Bioenergy Crops   总被引:1,自引:0,他引:1  
With predicted global changes in temperature and precipitation, drought will increasingly impose a challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility as revealed for example through measures of low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions. Genetics and functional genomics can play critical roles in generating knowledge to inform and aid genetic improvement for drought tolerance in bioenergy crops. The molecular aspects of drought response have been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops is limited. Plants in general exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants relative to the unique features associated with individual bioenergy species and genotypes. In this review, we summarize the general knowledge concerning drought responsive pathways, with a focus on the identification of commonality and specialty in drought responsive mechanisms among alternate species and genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics as a means to leverage the ever-increasing genomics resources and provide new insights beyond what is known from studies on individual species. Finally, we outline future opportunities for studying drought tolerance using the emerging technologies.  相似文献   

8.
Perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6‐year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn (Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk into three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit‐oriented farmers who are risk neutral or risk averse, perennial bioenergy crops have a higher potential to successfully compete with corn under marginal crop production conditions.  相似文献   

9.
Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land‐use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost‐effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence‐based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land‐use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land‐use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life‐cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry.  相似文献   

10.
The area of dedicated energy crops is expected to increase in Sweden. This will result in direct land use changes, which may affect the carbon stocks in soil and biomass, as well as yield levels and the use of inputs. Carbon dioxide (CO2) fluxes of biomass are often not considered when calculating the climate impact in life cycle assessments (LCA) assuming that the CO2 released at combustion has recently been captured by the biomass in question. With the extended time lag between capture and release of CO2 inherent in many perennial bioenergy systems, the relation between carbon neutrality and climate neutrality may be questioned. In this paper, previously published methodologies and models are combined in a methodological framework that can assist LCA practitioners in interpreting the time‐dependent climate impact of a bioenergy system. The treatment of carbon differs from conventional LCA practice in that no distinction is made between fossil and biogenic carbon. A time‐dependent indicator is used to enable a representation of the climate impact that is not dependent on the choice of a specific characterization time horizon or time of evaluation and that does not use characterization factors, such as global warming potential and global temperature potential. The indicator used to aid in the interpretation phase of this paper is global mean surface temperature change (ΔTs(n)). A theoretical system producing willow for district heating was used to study land use change effects depending on previous land use and variations in the standing biomass carbon stocks. When replacing annual crops with willow this system presented a cooling contribution to ΔTs(n). However, the first years after establishing the willow plantation it presented a warming contribution to ΔTs(n). This behavior was due mainly to soil organic carbon (SOC) variation. A rapid initial increase in standing biomass counteracted the initial SOC loss.  相似文献   

11.
Prairies used for bioenergy production have potential to generate marketable products while enhancing environmental quality, but little is known about how prairie species composition and nutrient management affect the suitability of prairie biomass for bioenergy production. We determined how functional‐group identity and nitrogen fertilization affected feedstock characteristics and estimated bioenergy yields of prairie plants, and compared those prairie characteristics to that of corn stover. We tested our objectives with a field experiment that was set up as a 5 × 2 incomplete factorial design with C3 grasses, C4 grasses, legumes, and multi‐functional‐group mixtures grown with and without nitrogen fertilizer; a fertilized corn treatment was also included. We determined cell wall, hemicellulose, cellulose, and ash concentrations; ethanol conversion ratios; gross caloric ratios; aboveground biomass production; ethanol yields; and energy yields for all treatments. Prairie functional‐group identity affected the biomass feedstock characteristics, whereas nitrogen fertilization did not. Functional group and fertilization had a strong effect on aboveground biomass production, which was the major predictor of ethanol and energy yields. C4 grasses, especially when fertilized, had among the most favorable bioenergy characteristics with high estimated ethanol conversion ratios and nongrain biomass production, relatively high gross caloric ratios, and low ash concentrations. The bioenergy characteristics of corn stover, from an annual C4 grass, were similar to those of the biomass of perennial C4 grasses. Both functional‐group composition and nitrogen fertility management were found to be important in optimizing bioenergy production from prairies.  相似文献   

12.
China's bioenergy potential   总被引:2,自引:0,他引:2  
Despite great enthusiasm about developing renewable energy in China, the country's bioenergy potential remains unclear. Traditional utilization of bioenergy through primarily household combustion of crop residue and fuelwood is still a predominant energy source for rural China. More efficient utilization of ~300 million tons of crop residues for bioelectricity generation could add a couple of percent of renewable energy to China's total energy production. With <9% of the world's arable land supporting ~20% of the world's population, China is already a net grain importer and has little extra farmland for producing a significantly additional amount of biofuels from first‐generation energy crops, such as maize, sugarcane, and soybean. Second‐generation energy crops hold the greatest potential for bioenergy development worldwide. Miscanthus, a native perennial C4 grass that produces high biomass across almost the entire climatic zone of China, is the most promising second‐generation energy crop to domesticate and cultivate. A reasonable near‐term goal is to produce 1 billion tons of Miscanthus biomass annually from ~100 million hectares of marginal and degraded land concentrated in northern and northwestern China. This can generate ~1458 TW h electricity and mitigate ~1.7 billion tons of CO2 emission from power coal, which account for ~45% of China's electricity output and ~28% of CO2 emission in 2007. Furthermore, growing perennial grasses on marginal and degraded land will contribute to the ongoing efforts in China to restore vast areas of land under serious threat of desertification. With this potential taken into account, bioenergy can play a major role in meeting China's rapidly growing energy demand while substantially reducing greenhouse gas emission.  相似文献   

13.
Maize and sorghum: genetic resources for bioenergy grasses   总被引:1,自引:0,他引:1  
The highly photosynthetic-efficient C4 grasses, such as switchgrass (Panicum virgatum), Miscanthus (Miscanthusxgiganteus), sorghum (Sorghum bicolor) and maize (Zea mays), are expected to provide abundant and sustainable resources of lignocellulosic biomass for the production of biofuels. A deeper understanding of the synthesis, deposition and hydrolysis of the distinctive cell walls of grasses is crucial to gain genetic control of traits that contribute to biomass yield and quality. With a century of genetic investigations and breeding success, recently completed genome sequences, well-characterized cell wall compositions, and a close evolutionary relationship with future bioenergy perennial grasses, we propose that maize and sorghum are key model systems for gene discovery relating to biomass yield and quality in the bioenergy grasses.  相似文献   

14.
Sweetcane (Erianthus arundinaceus [Retzius] Jeswiet) is an ecologically dominant warm‐season perennial grass native to southern China. It traditionally plays an important role in sugarcane breeding due to its excellent biological traits and genetic relatedness to sugarcane. Recent studies have shown that sweetcane has a great potential in bioenergy and environmental remediation. The objective of this paper is to review the current research on sweetcane biology, phenology, biogeography, agronomy, and conversion technology, in order to explore its development as a bioenergy crop with environmental remediation potential. Sweetcane is resistant to a variety of stressors and can adapt to different growth environments. It can be used for ecological restoration, soil and water conservation, contaminated land repairing, nonpoint source pollutants barriers in buffer strips along surface waters, and as an ornamental and remediation plant on roadsides and in wetlands. Sweetcane exhibits higher biomass yield, calorific value and cellulose content than other bioenergy crops under the same growth conditions, thereby indicating its superior potential in second‐generation biofuel production. However, research on sweetcane as a bioenergy plant is still in its infancy. More works need be conducted on breeding, cultivation, genetic transformation, and energy conversion technologies.  相似文献   

15.
The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.  相似文献   

16.
Increased production of biomass crops in North America will require new agricultural land, intensify the cultivation of land already under production and introduce new types of biomass crops. Assessing the potential biodiversity impacts of novel agricultural systems is fundamental to the maintenance of biodiversity in agricultural landscapes, yet the consequences of expanded biomass production remain unclear. We evaluate the ability of two candidate second generation biomass feedstocks (switchgrass, Panicum virgatum, and mixed-grass prairie) not currently managed as crops to act as post-breeding and fall migratory stopover habitat for birds. In total, we detected 41 bird species, including grassland specialists and species of state and national conservation concern (e.g. Henslow's Sparrow, Ammodramus henslowii). Avian species richness was generally comparable in switchgrass and prairie and increased with patch size in both patch types. Grassland specialists were less abundant and less likely to occur in patches within highly forested landscapes and were more common and likely to occur in larger patches, indicating that this group is also area-sensitive outside of the breeding season. Variation in the biomass and richness of arthropod food within patches was generally unrelated to richness and abundance metrics. Total bird abundance and that of grassland specialists was higher in patches with greater vegetation structural heterogeneity. Collectively, we find that perennial biomass feedstocks have potential to provide post-breeding and migratory stopover habitat for birds, but that the placement and management of crops will be critical factors in determining their suitability for species of conservation concern. Industrialization of cellulosic bioenergy production that results in reduced crop structural heterogeneity is likely to dramatically reduce the suitability of perennial biomass crops for birds.  相似文献   

17.
21st‐century modeling of greenhouse gas (GHG) emissions from bioenergy crops is necessary to quantify the extent to which bioenergy production can mitigate climate change. For over 30 years, the Century‐based biogeochemical models have provided the preeminent framework for belowground carbon and nitrogen cycling in ecosystem and earth system models. While monthly Century and the daily time‐step version of Century (DayCent) have advanced our ability to predict the sustainability of bioenergy crop production, new advances in feedstock generation, and our empirical understanding of sources and sinks of GHGs in soils call for a re‐visitation of DayCent's core model structures. Here, we evaluate current challenges with modeling soil carbon dynamics, trace gas fluxes, and drought and age‐related impacts on bioenergy crop productivity. We propose coupling a microbial process‐based soil organic carbon and nitrogen model with DayCent to improve soil carbon dynamics. We describe recent improvements to DayCent for simulating unique plant structural and physiological attributes of perennial bioenergy grasses. Finally, we propose a method for using machine learning to identify key parameters for simulating N2O emissions. Our efforts are focused on meeting the needs for modeling bioenergy crops; however, many updates reviewed and suggested to DayCent will be broadly applicable to other systems.  相似文献   

18.
Biomass from dedicated crops is expected to contribute significantly to the replacement of fossil resources. However, sustainable bioenergy cropping systems must provide high biomass production and low environmental impacts. This study aimed at quantifying biomass production, nutrient removal, expected ethanol production, and greenhouse gas (GHG) balance of six bioenergy crops: Miscanthus × giganteus, switchgrass, fescue, alfalfa, triticale, and fiber sorghum. Biomass production and N, P, K balances (input‐output) were measured during 4 years in a long‐term experiment, which included two nitrogen fertilization treatments. These results were used to calculate a posteriori ‘optimized’ fertilization practices, which would ensure a sustainable production with a nil balance of nutrients. A modified version of the cost/benefit approach proposed by Crutzen et al. (2008), comparing the GHG emissions resulting from N‐P‐K fertilization of bioenergy crops and the GHG emissions saved by replacing fossil fuel, was applied to these ‘optimized’ situations. Biomass production varied among crops between 10.0 (fescue) and 26.9 t DM ha?1 yr?1 (miscanthus harvested early) and the expected ethanol production between 1.3 (alfalfa) and 6.1 t ha?1 yr?1 (miscanthus harvested early). The cost/benefit ratio ranged from 0.10 (miscanthus harvested late) to 0.71 (fescue); it was closely correlated with the N/C ratio of the harvested biomass, except for alfalfa. The amount of saved CO2 emissions varied from 1.0 (fescue) to 8.6 t CO2eq ha?1 yr?1 (miscanthus harvested early or late). Due to its high biomass production, miscanthus was able to combine a high production of ethanol and a large saving of CO2 emissions. Miscanthus and switchgrass harvested late gave the best compromise between low N‐P‐K requirements, high GHG saving per unit of biomass, and high productivity per hectare.  相似文献   

19.
Conservative biological control promotes the use of native natural enemies to limit the size and growth of pest populations. Although spiders constitute one of the most important groups of native predators in several crops, their trophic ecology remains largely unknown, especially for several generalist taxa. In laboratory, we assessed the predatory behaviour of a wandering spider (the wolf spider Lycosa thorelli (Keyserling, 1877) against several arthropods varying in size and trophic positions, all found in South American soybean and rice crops. As prey we used the bug Piezodorus guildinii (Westwood, 1837) as well as larvae and adults of the moth Spodoptera frugiperda (Smith, 1797), both being considered important pests in Uruguayan crops. We also used several non-pest arthropods as prey, sarcophagid flies, carabid beetles and wolf spiders. All prey were attacked in more or less high, although not statistically differing, proportions. However, carabids were not consumed, and bugs were consumed in significantly lower proportions than flies. A negative correlation was found between prey size and acceptance rate. Immobilization times were longer against larvae when compared to moths and flies, while predatory sequences were longer for bugs when compared to flies, moths and spiders. In addition, we found a positive effect of prey size on predatory sequence length and complexity. Our results confirm the ability of spiders to attack and feed upon prey with different morphologies, included well-defended arthropods, and their potential use as natural enemies of several pests in South American crops.  相似文献   

20.
As an herbaceous perennial, Miscanthus has attracted extensive attention in bioenergy refinery and ecological remediation due to its high yield and superior environmental adaptability. This review summarizes current research advances of Miscanthus in several aspects including biological properties, biofuels production, and phytoremediation of contaminated soil. Miscanthus has relatively high biomass yield, calorific value, and cellulose content compared with other lignocellulosic bioenergy crops, which make it one of the most promising feedstocks for the production of second‐generation biofuels. Moreover, Miscanthus can endure soil pollutions caused by various heavy metals and survive in a variety of adverse environmental conditions. Therefore, it also has potential applications in ecological remediation of contaminated soil, and reclamation of polluted soil and water resources. Nevertheless, more endeavors are still needed in the genetic improvement and elite cultivar breeding, large‐scale cultivation on marginal land, and efficient conversion to biofuels, when utilizing Miscanthus as a bioenergy crop. Furthermore, more efforts should also be undertaken to translate Miscanthus into a bioenergy crop with the phytoremediation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号