首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Squatting is a commonly prescribed exercise following reconstruction of the anterior cruciate ligament (ACL). The objective of this paper was to measure the in vivo strain patterns of the normal ACL and the load at the knee for the simple squat and for squatting with a “sport cord”. A sport cord is a large elastic rubber tube used for added resistance. Strain patterns were deduced using displacement data from a Hall Effect Strain Transducer (HEST), while joint loads were determined by a mathematical model with inputs from a force plate and electrogoniometers. ACL strain for the free squat in one subject had a maximum of 2% at a knee angle of 10° and was slack for knee angles >17°. In squatting with a sport cord, peak strain was 1% at 10° and was slack at knee angles >14°. Since these peak strains are low, squatting appears to be a safe exercise for conservative rehabilitation of ACL reconstruction patients. In addition, the sport cord is a recommended augmentation to the activity. We believe that the decrease in strain with the sport cord results from added joint stiffness due to greater compressive forces at the tibiofemoral joint. This greater compressive force results from the approximately 10% increase in quadriceps activity. From shear force data predicted by the mathematical model, the maximum anterior drawer force for free squatting (50 N) was considerably less than for sport cord squatting (430 N). Therefore, the value of shear force at the tibiofemoral joint only partially determines the load placed on the ACL.  相似文献   

2.
A golf-related ACL injury can be linked with excessive golf play or practice because such over-use by repetitive golf swing motions can increase damage accumulation to the ACL bundles. In this study, joint angular rotations, forces, and moments, as well as the forces and strains on the ACL of the target-side knee joint, were investigated for ten professional golfers using the multi-body lower extremity model. The fatigue life of the ACL was also predicted by assuming the estimated ACL force as a cyclic load. The ACL force and strain reached their maximum values within a short time just after ball-impact in the follow-through phase. The smaller knee flexion, higher internal tibial rotation, increase of the joint compressive force and knee abduction moment in the follow-through phase were shown as to lead an increased ACL loading. The number of cycles to fatigue failure (fatigue life) in the ACL might be several thousands. It is suggested that the excessive training or practice of swing motion without enough rest may be one of factors to lead to damage or injury in the ACL by the fatigue failure. The present technology can provide fundamental information to understand and prevent the ACL injury for golf players.  相似文献   

3.
BackgroundBiological processes after anterior cruciate ligament reconstruction (ACLR) is crucial for recovery. However, alterations in the of synovial fluid cell population during the acute phase following ACLR and the relationship between these cells and postoperative pain is unclear. The goal of this study was to reveal alterations in synovial fluid cell population during the acute phase following ACLR and relationship between postoperative pain and proportion of synovial fluid cells.MethodsSynovial fluids were obtained from all patients (n = 50) before surgery and from patients who showed hydrarthrosis at days 4 (n = 25), and 21 (n = 42) post-surgery. The cell population was analyzed by flow cytometry. IL1β, IL8, and met-enkephalin in synovial fluid were quantitated by enzyme-linked immunosorbent assay. Patients answered numerical rating scale (NRS) questionnaire at 4 days and approximately 4 weeks postoperatively.ResultsThe granulocyte population was significantly higher at 4 days after surgery than at any other time points. The population of macrophages was 3.2 times and 7.7 times as high as at surgery on days 4 and 21, respectively. T cell population was significantly higher 21 days after surgery compared to 4 days after surgery. All NRS 4 weeks after surgery showed a significant negative correlation with the granulocyte population in synovial fluid 4 days after surgery. Granulocyte population in synovial fluid significantly correlated with the levels of IL1β and IL8. Postoperative pain at rest tended to decrease with an increase in met-enkephalin concentration 4 days after ACLR.ConclusionsSynovial fluid after ACLR had an inflammatory environment at early time points and a healing environment in the subsequent phase about concerning to the cellular composition. A proportion of synovial fluid cells and endogenous opioids affected postoperative pain.  相似文献   

4.
Partial anterior cruciate ligament (p-ACL) rupture is a common injury, but the impact of a p-ACL injury on in vivo joint kinematics has yet to be determined in an animal model. The in vivo kinematics of the ovine stifle joint were assessed during ‘normal’ gait, and at 20 and 40 weeks after p-ACL transection (Tx). Gross morphological scoring of the knee was conducted. p-ACL Tx creates significant progressive post-traumatic osteoarthritis (PTOA)-like damage by 40 weeks. Statistically significant increases for flexion angles at hoof-strike (HS) and mid-stance (MST) were seen at 20 weeks post p-ACL Tx and the HS and hoof-off (HO) points at 40 weeks post p-ACL-Tx, therefore increased flexion angles occurred during stance phase. Statistically significant increases in posterior tibial shift at the mid-flexion (MF) and mid-extension (ME) points were seen during the swing phase of the gait cycle at 40 weeks post p-ACL Tx. Correlation analysis showed a strong and significant correlation between kinematic changes (instabilities) and gross morphological score in the inferior-superior direction at 40 weeks post p-ACL Tx at MST, HO, and MF. Further, there was a significant correlation between change in gross morphological combined score (ΔGCS) and the change in location of the helical axis in the anterior direction (ΔsAP) after p-ACL Tx for all points analyzed through the gait cycle. This study quantified in vivo joint kinematics before and after p-ACL Tx knee injury during gait, and demonstrated that a p-ACL knee injury leads to both PTOA-like damage and kinematic changes.  相似文献   

5.
We present findings on the way in which to use electromyographic (EMG) measurements from muscles acting on the knee in planning rehabilitation of subjects after rupture of anterior cruciate ligament (ACL). ACL subjects demonstrated an earlier recruitment and a tendency to prolonged activity in muscles around the deficient knee as compared with a control group. Especially the hamstring lateralis and the gastrocnemius medialis (GM) muscles showed an earlier EMG onset and a longer EMG burst duration. The clinical relevance of the EMG findings was assessed by comparing the muscle coordination and relative levels of activity between a functionally excellent/good and a functionally poor ACL patient group. Significant differences between the two groups were noted in EMG onset and burst duration of the GM muscle. A rehabilitation program based on the EMG findings from the GM muscle was designed. In this program, the ACL subjects with poor stability were trained to change the EMG activity of the gastrocnemius muscles according to the recruitment pattern of the good/excellent ACL-group. We were able to train the subjects to change their muscle recruitment and to improve their knee stability. The stability of the knee joint depends on the stiffness of the muscles and ligaments around and within the knee. We discuss the importance of the gastrocnemius muscles with regard to knee joint stiffness.  相似文献   

6.
The purpose of this study was to determine whether mechanical adaptations were present in patients with anterior cruciate ligament (ACL)-deficient knees during high-demand activities. Twenty-two subjects with unilateral ACL deficiency (11 males and 11 females, 19.6 months after injury) performed five different activities at a comfortable speed (level walking, ascending and descending steps, jogging, jogging to a 90-degree side cutting toward the opposite direction of the tested side). Three-dimensional knee kinematics for the ACL-deficient knees and uninjured contralateral knees were evaluated using the Point Cluster Technique. There was no significant difference in knee flexion angle, but an offset toward the knee in less valgus and more external tibial rotation was observed in the ACL-deficient knee. The tendency was more obvious in high demand motions, and a significant difference was clearly observed in the side cutting motions. These motion patterns, with the knee in less valgus and more external tibial rotation, are proposed to be an adaptive movement to avoid pivot shift dynamically, and reveal evidence in support of a dynamic adaptive motion occurring in ACL-deficient knees.  相似文献   

7.
As one of the most complex and vulnerable structures of body, the human knee joint should maintain dynamic equilibrium and stability in occupational and recreational activities. The evaluation of its stability and factors affecting it is vital in performance evaluation/enhancement, injury prevention and treatment managements. Knee stability often manifests itself by pain, hypermobility and giving-way sensations and is usually assessed by the passive joint laxity tests. Mechanical stability of both the human knee joint and the lower extremity at early stance periods of gait (0% and 5%) were quantified here for the first time using a hybrid musculoskeletal model of the lower extremity. The roles of muscle coactivity, simulated by setting minimum muscle activation at 0–10% levels and ACL deficiency, simulated by reducing ACL resistance by up to 85%, on the stability margin as well as joint biomechanics (contact/muscle/ligament forces) were investigated. Dynamic stability was analyzed using both linear buckling and perturbation approaches at the final deformed configurations in gait. The knee joint was much more stable at 0% stance than at 5% due to smaller ground reaction and contact forces. Muscle coactivity, when at lower intensities (<3% of its maximum active force), increased dynamic stability margin. Greater minimum activation levels, however, acted as an ineffective strategy to enhance stability. Coactivation also substantially increased muscle forces, joint loads and ACL force and hence the risk of further injury and degeneration. A deficiency in ACL decreases total ACL force (by 31% at 85% reduced stiffness) and the stability margin of the knee joint at the heel strike. It also markedly diminishes forces in lateral hamstrings (by up to 39%) and contact forces on the lateral plateau (by up to 17%). Current work emphasizes the need for quantification of the lower extremity stability margin in gait.  相似文献   

8.
9.
A custom knee loading apparatus (KLA), when used in conjunction with magnetic resonance imaging, enables in vivo measurement of the gross anterior laxity of the knee joint. A numerical model was applied to the KLA to understand the contribution of the individual joint structures and to estimate the stiffness of the anterior-cruciate ligament (ACL). The model was evaluated with a cadaveric study using an in situ knee loading apparatus and an ElectroForce test system. A constrained optimization solution technique was able to predict the restraining forces within the soft-tissue structures and joint contact. The numerical model presented here allowed in vivo prediction of the material stiffness parameters of the ACL in response to applied anterior loading. Promising results were obtained for in vivo load sharing within the structures. The numerical model overestimated the ACL forces by 27.61–92.71%. This study presents a novel approach to estimate ligament stiffness and provides the basis to develop a robust and accurate measure of in vivo knee joint laxity.  相似文献   

10.
A potential cause of non-contact anterior cruciate ligament (ACL) injury is landing on an extended knee. In line with this hypothesis, studies have shown that the ACL is elongated with decreasing knee flexion angle. Furthermore, at low flexion angles the patellar tendon is oriented to increase the anterior shear component of force acting on the tibia. This indicates that knee extension represents a position in which the ACL is taut, and thus may have an increased propensity for injury, particularly in the presence of excessive force acting via the patellar tendon. However, there is very little in vivo data to describe how patellar tendon orientation and ACL elongation interact during flexion. Therefore, this study measured the patellar tendon tibial shaft angle (indicative of the relative magnitude of the shear component of force acting via the patellar tendon) and ACL length in vivo as subjects performed a quasi-static lunge at varying knee flexion angles. Spearman rho rank correlations within each individual revealed that flexion angles were inversely correlated to both ACL length (rho = −0.94 ± 0.07, mean ± standard deviation, p < 0.05) and patellar tendon tibial shaft angle (rho = −0.99 ± 0.01, p < 0.05). These findings indicate that when the knee is extended, the ACL is both elongated and the patellar tendon tibial shaft angle is increased, resulting in a relative increase in anterior shear force on the tibia acting via the patellar tendon. Therefore, these data support the hypothesis that landing with the knee in extension is a high risk scenario for ACL injury.  相似文献   

11.
AIM: To investigate collagen patches seeded with mesenchymal stem cells(MSCs) and/or tenocytes(TCs) with regards to their suitability for anterior cruciate ligament(ACL) repair. METHODS: Dynamic intraligamentary stabilization utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide?(CG) and Novocart?(NC). Cells were seeded onto the scaffolds and cultured for 7 d either as a pure populations or as "premix" containing a 1:1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts(0.4 μm). We analyzed the patches by real time polymerase chain reaction, glycosaminoglycan(GAG), DNA and hydroxyproline(HYP) content. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e., confocal laser scanning microscopy(c LSM) and scanning electron microscopy(SEM), were applied.RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and c LSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitativepolymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 d.CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.  相似文献   

12.
Kinematic and kinetic changes following anterior cruciate ligament (ACL) rupture and reconstruction (ACLR) have been fundamental to the understanding of mechanical disrupted load as it contributes to the development of posttraumatic osteoarthritis. These analyses overlook the potential contribution of muscle activity as it relates to the joint loading environment. Males and females classified as non-copers present with unique knee kinematics and kinetics after ACL injury. The purpose of this study was to perform sex-specific analyses in these individuals to explore muscle activity timing during gait after ACL rupture. Thirty-nine participants (12 females, 27 males) were enrolled. Muscle activity during gait was evaluated before and after pre-operative physical therapy, and six months after ACLR. Surface electromyography data were evaluated to determine timing (e.g., the time the muscle activity begins (‘On’) and ends (‘Off’)) for seven muscles: vastus lateralis and medialis (VL, VM), lateral and medial hamstrings (LH, MH), lateral and medial gastrocnemius (LG, MG), and soleus (SOL). General linear models with generalized estimating equations detected the effects of limb and time for muscle activity timing. Males presented with more limb asymmetries before and after pre-operative PT in the VL On (p < 0.001) and Off (p = 0.007), VM On and Off (p < 0.001), and MH off (p < 0.001), but all limb differences resolved by six months post ACLR. Changes in muscle activity in males were pervasive over time in both limbs. Females presented with no interlimb differences pre-operatively, and only involved limb VL off (p = 0.027) and VM off (p = 0.003) and the LH off in both limbs (p < 0.038) changed over time. Our data indicate that inter-limb differences in muscle activity across time points and changes in muscle activity timing over the course of physical therapy were sex specific. Males presented with more inter-limb differences in muscle activity across time points, and females presented with fewer asymmetries before and after pre-operative physical therapy. These data support that sex-specific adaptations should be taken into consideration when assessing biomechanical changes after ACLR.  相似文献   

13.
Interlimb and sex-based differences in gait mechanics and neuromuscular control are common after anterior cruciate ligament reconstruction (ACLR). Following ACLR, individuals typically exhibit elevated co-contraction of knee muscles, which may accelerate knee osteoarthritis (OA) onset. While directed (medial/lateral) co-contractions influence tibiofemoral loading in healthy people, it is unknown if directed co-contractions are present early after ACLR and if they differ across limbs and sexes. The purpose of this study was to compare directed co-contraction indices (CCIs) of knee muscles in both limbs between men and women after ACLR. Forty-five participants (27 men) completed overground walking at a self-selected speed 3 months after ACLR during which quadriceps, hamstrings, and gastrocnemii muscle activities were collected bilaterally using surface electromyography. CCIs of six muscle pairs were calculated during the weight acceptance interval. The CCIs of the vastus lateralis/biceps femoris muscle pair (lateral musculature) was greater in the involved limb (vs uninvolved; p = 0.02). Compared to men, women exhibited greater CCIs in the vastus medialis/lateral gastrocnemius and vastus lateralis/lateral gastrocnemius muscle pairs (p < 0.01 and p = 0.01, respectively). Limb- and sex-based differences in knee muscle co-contractions are detectable 3 months after ACLR and may be responsible for altered gait mechanics.  相似文献   

14.
The purpose of this study was to examine the moment-arm and cross-sectional area (CSA) of the patellar tendon (PT) and the hamstrings after anterior cruciate ligament (ACL) reconstruction. The right knee of five males who underwent ACL reconstruction with a PT graft and five age-matched controls was scanned using magnetic resonance image scans. Based on three-dimensional (3D) solids of the PT, CSAs and moment-arms of semitendinous (ST), biceps femoris (BF) long head and semimembranosus (SM) were estimated. Analysis of variance indicated no significant group differences in muscle moment-arms (p>0.05). 3D moment-arms of PT, ST and BF were significantly lower than the corresponding 2D values (p < 0.05). The ACL group displayed a significantly higher maximum BF CSA, a lower ST CSA (p < 0.05) but similar PT and SM CSAs compared with controls. It is concluded that any alterations in PT properties 1 year after harvesting do not affect knee muscle moment-arms compared with age-matched controls. Moment-arm estimation differed between 3D and 2D data, although it did not affect comparisons between ACL reconstruction group and controls. Design of rehabilitation programmes should take into consideration a potential alteration in hamstring morphology following surgery with a PT graft.  相似文献   

15.
BACKGROUND: A complete understanding of neural mechanisms by which ligament receptors may contribute to joint stability is not well established. It has been suggested that these receptors may be involved in a neuromuscular process related to the modulation of dynamic co-contraction, as a means of guaranteeing functional joint stability. HYPOTHESIS: Individuals with ACL injury have diminished dynamic co-contraction. STUDY DESIGN: Exploratory, cross-sectional design. METHODS: Ten subjects with unilateral ACL injury treated conservatively, and ten subjects without history of injury participated in the study. The co-contraction level was assessed through EMG recordings of the vastus lateralis and biceps femoris before and after a perturbation imposed on the subjects during a walking task. RESULTS: Subjects with ACL injury presented significantly lower co-contraction level pre-perturbation (p = 0.045) and post-perturbation (p = 0.046) than those in the control group. CONCLUSIONS: The bilateral decrease in muscular co-contraction presented by individuals with ACL injury suggests that ligament and joint receptors may be responsible for a bilateral dynamic increase in muscle and joint stiffness that could result in a greater joint stability. CLINICAL RELEVANCE: This study analyzed a neuromuscular mechanism that might contribute to the functional stability of the knee joint.  相似文献   

16.
The effect of posterior cruciate ligament (PCL) on muscle co-activation (MCO) is not known though MCO has been extensively studied. The purpose of the study was to investigate the effect of PCL creep on MCO and on joint moment around the knee. Twelve males and twelve females volunteered for this study. PCL creep was estimated via tibial posterior displacement which was elicited by a 20 kg dumbbell hanged on horizontal shank near patella for 10 min. Electromyography activity from both rectus femoris and biceps femoris as well as muscle strength on the right thigh was recorded synchronically during knee isokinetic flexion–extension performance in speed of 60 deg/s as well as 120 deg/s on a dynamometer before and after PCL creep. A one-way ANOVA with repeated measures was used to evaluate the effect of creep, gender and speed. The results showed that significant tibial posterior displacement was found (p = 0.01) in both male and female groups. No significant increase of joint moment was found in flexion as well as in extension phase in both female and male groups. There was a significant effect of speed (p = 0.036) on joint moment in extension phase. Co-activation index (CI) decreased significantly (p = 0.049) in extension phase with a significant effect of gender (p  0.001). It was concluded that creep developed in PCL due to static posterior load on the proximal tibia could significantly elicit the increase of the activation of agonist muscles but with no compensation from the antagonist in flexion as well as in extension phase. The creep significantly elicited the decrease of the antagonist–agonist CI in extension phase. MCO in females was reduced significantly in extension phase. It was suggested that PCL creep might be one of risk factors to the knee injury in sports activity.  相似文献   

17.
The purpose of this study was to describe kinematic and kinetic differences between a group of ACL deficient subjects who were grouped according to functional ability. Sixteen patients with complete ACL rupture were studied; eight subjects had instability with activities of daily living (non-copers) and eight subjects had returned to all pre-injury activity without limitation (copers). Three-dimensional joint kinematics and kinetics were collected from the knee and ankle during walking, jogging and going up and over a step. Results showed that both groups mitigated the force with which they contacted the floor but non-copers consistently demonstrated less knee flexion in the involved limb. The copers used joint kinematics similar to those of their uninvolved knees and similar to knee motions reported in uninjured subjects. The reduced knee motion in the involved knee of the non-copers did not correlate directly with quadriceps femoris muscle weakness.

The data suggest that the non-copers utilize a stabilization strategy which stiffens the knee joint which not only is unsuccessful but may lead to excessive joint contact forces which have the potential to damage articular structures. The copers use a strategy which permits normal knee kinematics and bodes well for joint integrity.  相似文献   


18.
19.
This study determined which knee joint motions lead to anterior cruciate ligament (ACL) rupture with the knee at 25° of flexion. The knee was subjected to internal and external rotations, as well as varus and valgus motions. A failure locus representing the relationship between these motions and ACL rupture was established using finite element simulations. This study also considered possible concomitant injuries to the tibial articular cartilage prior to ACL injury. The posterolateral bundle of the ACL demonstrated higher rupture susceptibility than the anteromedial bundle. The average varus angular displacement required for ACL failure was 46.6% lower compared to the average valgus angular displacement. Femoral external rotation decreased the frontal plane angle required for ACL failure by 27.5% compared to internal rotation. Tibial articular cartilage damage initiated prior to ACL failure in all valgus simulations. The results from this investigation agreed well with other experimental and analytical investigations. This study provides a greater understanding of the various knee joint motion combinations leading to ACL injury and articular cartilage damage.  相似文献   

20.
Summary The significantly higher incidence of anterior cruciate ligament (ACL) injuries in collegiate women compared with men may result from relative ligament laxity. Differences in estrogen and relaxin activity, similar to that seen in pregnancy, may account for this. We quantified estrogen receptors by flow cytometry and relaxin receptors by radioligand binding assay in human ACL cells and compared the presence of these receptors in males and females. ACL stumps were harvested from seven males and eight females with acute ACL injuries. The tissue was placed in M199 cell culture medium. Outgrowth cultures were obtained, and passage 2 cells were used for all studies. Estrogen receptor determination was performed using flow cytometry. Relaxin binding was performed in ACL cells derived from five female and male patients using I125-labeled relaxin. Estrogen receptors were identified by flow cytometry in 4 to 10% of ACL cells. Mean fluorescence of cells expressing estrogen receptors was approximately twice that of controls, with no significant differences between males and females. Relaxin studies showed low-level binding of I125-relaxin-labeled ACL cells. Relaxin binding was present in four out of five female ACL cells versus one out of five male ACL cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号