首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To isolate the genes involved in the response of graminaceous plants to Fe-deficient stress, a protein induced by Fe-deficiency treatment was isolated from barley (Hordeum vulgare L.) roots. Based on the partial amino acid sequence of this protein, a cDNA (HvAPT1) encoding adenine phosphoribosyltransferase (APRT: EC 2.4.2.7) was cloned from a cDNA library prepared from Fe-deficient barley roots. Southern analysis suggested that there were at least two genes encoding APRT in barley. Fe deficiency increased HvAPT1 expression in barley roots and resupplying Fe to the Fe-deficient plants rapidly negated the increase in HvAPT1 mRNA. Analysis of localization of HvAPT1-sGFP fusion proteins in tobacco BY-2 cells indicated that the protein from HvAPT1 was localized in the cytoplasm of cells. Consistent with the results of Northern analysis, the enzymatic activity of APRT in barley roots was remarkably increased by Fe deficiency. This induction of APRT activity by Fe deficiency was also observed in roots of other graminaceous plants such as rye, maize, and rice. In contrast, the induction was not observed to occur in the roots of a non-graminaceous plant, tobacco. Graminaceous plants generally synthesize the mugineic acid family phytosiderophores (MAs) in roots under Fe-deficient conditions. In this paper, a possible role of HvAPT1 in the biosynthesis of MAs related to adenine salvage in the methionine cycle is discussed.  相似文献   

3.
The ABC transporter-encoding gene MgAtr7 from the wheat pathogen Mycosphaerella graminicola was cloned based upon its high homology to ABC transporters involved in azole-fungicide sensitivity. Genomic and cDNA sequences indicated that the N-terminus of this ABC transporter contains a motif characteristic for a dityrosine/pyoverdine biosynthesis protein. This makes MgAtr7 the first member of a new class of fungal ABC transporters harboring both a transporter and a biosynthetic moiety. A homologue of MgAtr7 containing the same biosynthetic moiety was only found in the Fusarium graminearum genome and not in any other fungal genome examined so far. The gene structure of both orthologous transporters is highly conserved and the genomic area surrounding the ABC transporter exhibits micro-synteny between M. graminicola and F. graminearum. Functional analyses revealed that MgAtr7 is neither required for virulence nor involved in fungicide sensitivity but indicated a role in maintenance of iron homeostasis.  相似文献   

4.
5.
This paper aimed to study the possible involvement of adenosine triphosphate‐binding cassette (ABC) transporters in the detoxification of quantum dots (QDs) in human breast carcinoma (SK‐BR‐3) cells. The effects of QD sizes on such interactions were also evaluated. For this purpose, we used monodispersed MPA‐COOH‐CdTe QDs with different diameters (emission length at 560 and 625 nm, named as QD‐560 and QD‐625). Such QDs tended to accumulate in cells and cause significant toxicity. Using specific inhibitors of ABC transporters, the cellular accumulation and toxicity of QDs in SK‐BR‐3 cells were significantly affected. Moreover, treatment of QDs caused concentration‐ and time‐dependent induction of ABC transporters. Furthermore, the induction effects of smaller QDs were found to be greater than larger ones at equivalent concentrations, suggesting a size‐dependent recognition of substrates by ABC transporters. Overall, these results provided important support for the modulation of QDs toxicity by ABC transporters.  相似文献   

6.
7.
Zinc (Zn) is an essential element for plants but limited information is currently available on the molecular basis for Zn2+ transport in crop species. To expand the knowledge on Zn2+ transport in barley (Hordeum vulgare L.), a cDNA library prepared from barley roots was expressed in the yeast (Saccharomyces cerevisiae) mutant strain Δzrt1/Δzrt2, defective in Zn2+ uptake. This strategy resulted in isolation and identification of three new Zn2+ transporters from barley. All of the predicted proteins have a high similarity to the ZIP protein family, and are designated HvZIP3, HvZIP5 and HvZIP8, respectively. Complementation studies in Δzrt1/Δzrt2 showed restored growth of the yeast cells transformed with the different HvZIPs, although with different efficiency. Transformation into Fe2+ and Mn2+ uptake defective yeast mutants showed that the HvZIPs were unable to restore the growth on Fe2+ and Mn2+ limited media, respectively, indicating a specific role in Zn2+ transport. In intact barley roots, HvZIP8 was constitutively expressed whereas HvZIP3 and HvZIP5 were mainly expressed in ?Zn plants. These results suggest that HvZIP3, HvZIP5 and HvZIP8 are Zn2+ transporters involved in Zn2+ homeostasis in barley roots. The new transporters may facilitate breeding of barley genotypes with improved Zn efficiency and Zn content.  相似文献   

8.
The authors attempted to relate the cultivar-specific salt tolerance in barley (Hordeum distichum L.) to the efficiency of ion transporters in the plasmalemma and tonoplast. The study involved plasmalemma and tonoplast membrane vesicles isolated from roots and leaves of the 7-day-old barley seedlings exposed to elevated NaCl concentrations. Two barley cultivars were employed: salt-tolerant cv. Elo and salt-susceptible cv. Belogorskii. The vesicles were used to measure the transport activity of plasmalemma and tonoplast proton pumps and the cation/anion exchange. The data obtained in the experiments demonstrated that the changes in the activity of ion transporters under salt stress conditions correlated with the barley cultivar-specific tolerance to elevated NaCl concentrations.  相似文献   

9.
This study examines the roles of anion channels and ATP binding cassette (ABC) protein transporters in mediating elicitor-induced ATP release in Salvia miltiorrhiza hairy root cultures. The elicitor-induced ATP release was effectively blocked by two putative membrane anion channel blockers, niflumic acid and Zn2+, but not by a specific Cl channel blocker, phenylanthranilic acid. The elicitor-induced ATP release was also significantly suppressed by two ABC inhibitors, glibenclamide and ethacrynic acid. Notable ATP release from the hairy roots was also induced by verapamil (2 mM), an ABC activator in animal cells. The verapamil-induced ATP release was effectively blocked by niflumic acid, but only slightly inhibited by the ABC inhibitors. Another notable effect of verapamil was the induction of exocytosis, the secretion of vesicle-like particles to the root surface. The verapamil-induced exocytosis was not inhibited by nifulumic acid and YE did not induce the exocytosis. Overall, the results suggest a significant role of anion channels, a possible involvement of ABC proteins and no significant involvement of exocytosis in mediating the ATP efflux in hairy root cells.  相似文献   

10.
Some members of the ABC-transporter superfamily, such as P-glycoprotein and the multidrug resistance associated protein, may confer resistance to the avermectin subclass of macrocyclic lactones. The aim of this study was to examine the presence of ABC transporters in both sea lice (Lepeophtheirus salmonis) and its Atlantic salmon host (Salmo salar) using monoclonal antibodies (C219 and JSB-1, with high selectivity for P-gp) and a new polyclonal antibody (SL0525) generated against a putative sea louse ABC transporter. The antibody raised to SL0525 did not react with rat P-gp, suggesting that an ABC transporter, not necessarily P-gp, was isolated. C219 was the only antibody to localize P-gp in all 3 salmon tissues (intestine, kidney and liver). American lobster (Homarus americanus) was used as a reference crustacean for L. salmonis immunostaining reactions and showed positive staining in the hepatopancreatic and intestinal tissues with all 3 antibodies. The L. salmonis showed positive staining in the intestinal epithelial lining with all antibodies. This report represents the first documented evidence for the expression of ABC transporters in L. salmonis, its Atlantic salmon host, and the American lobster.  相似文献   

11.
Macrophages respond to cholesterol accumulation by increasing cholesterol efflux, which is mediated by activation of the nuclear liver X receptor (LXR) and ATP binding cassette (ABC) transporters. In the present study, we investigated whether foam cell formation induced by phospholipase A(2)-modified low-density lipoprotein (PLA-LDL) influences LXR activity and cholesterol efflux in primary human monocyte-derived macrophages (MDMs). Macrophages were treated with PLA-LDL and expression of the LXR target genes ABCA1 and ABCG1 was analyzed by quantitative PCR and western blot. PLA-LDL time-dependently up-regulated ABCA1 and ABCG1 mRNA and protein. Removal of non-esterified fatty acids from PLA-LDL particles did not influence the induction of ABC transporters. A role of LXR in PLA-LDL-stimulated ABCG1 expression was verified by LXR-knockdown and luciferase reporter assays using a construct containing a LXR response element from the ABCG1 gene. Functionally, cholesterol efflux to apolipoprotein A-I and high-density lipoprotein was higher in PLA-LDL treated cells compared to controls. Together, these results demonstrate that in primary human MDMs PLA-LDL induces ABC transporter expression via LXR activation. A concomitantly increased cholesterol efflux may prevent excessive cholesterol accumulation and thus, attenuate foam cell formation.  相似文献   

12.
Lipids from Bean, Barley and Sugar Beet in Relation to Salt Resistance   总被引:1,自引:0,他引:1  
A comparison was made between the lipid and fatty acid composition of the salt-sensitive bean (Phaseolus vulgaris L. cv. Saxa), the less salt-sensitive barley (Hordeum vulgaris L. cv. Wisa) and the salt-tolerant sugar beet (Beta vulgaris L. cv. Kawemono). Sugar beet roots showed a higher content of sterol components and sulfolipid as compared with bean and barley roots. The lipids of sugar beet roots contained more linoleic acid and less linolenic acid than those of bean and barley roots. For barley and sugar beet roots a higher amount of extra-long chain fatty acids was observed than for bean roots. It was concluded that differences in membrane structure are correlated with differences in membrane permeability to sodium and chloride and in salt-resistance of the studied species.  相似文献   

13.
14.
15.
Paenibacillus polymyxa E681 is known to be able to suppress plant diseases by producing antimicrobial compounds and to promote plant growth by producing phytohormones, and secreting diverse degrading enzymes. In spite of these capabilities, little is known regarding the flow of information from the bacterial strain to the barley roots. In an attempt to determine the flow of information from the bacterial strain to barley roots, the train was grown in the presence and absence of barley, and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and MALDI-TOF mass spectrometry were used. 2D-PAGE detected approximately 1000 spots in the cell and 1100 spots in the supernatant at a pH 4-10 gradient. Interestingly, about 80 spots from each sample showed quantitative variations. Fifty-three spots from these were analyzed by MALDI-TOF mass spectrometry and 28 proteins were identified. Most of the cytosolic proteins expressed at higher levels were found in P. polymyxa E681 cells grown in the presence of barley rather than in the absence of barley. Proteins detected at a lower level in the surpernatant of P. polymyxa E681 cells grown in the presence of barley were lipoprotein, glucose-6-phosphate 1-dehydrogenase, heat-shock protein HtpG spermidine synthase, OrfZ, ribonuclease PH, and coenzyme PQQ synthesis protein, and flagellar hook-associated protein 2 whereas proteins detected at a higher level in the surpernatant of P. polymyxa E681 cells grown in the presence of barley included D-alanyl-D-alanine ligase A, isopentenyldiphosphate delta-isomerase, ABC transporter ATP-binding protein Uup, lipase. Many of the proteins belonging to plant-induced stimulons are associated with biosynthetic metabolism and metabolites of proteins and transport. Some of these proteins would be expected to be induced by environmental changes resulting from the accumulation of plant-secreted substances.  相似文献   

16.
The mechanisms of root hair formation have been studied extensively in Arabidopsis but knowledge about these processes in monocot species is still limited, especially in relation to the proteome level. The aim of this study was to identify the proteins that are involved in the initiation and the early stage of root hair tip growth in barley using two-dimensional (2D) electrophoresis and mass spectrometry. A comparison of proteins that accumulate differentially in two root hair mutants and their respective parent varieties resulted in the identification of 13 proteins that take part in several processes related to the root hair morphogenesis, such as the control of vesicular trafficking, ROS signalling and homeostasis, signal transduction by phospholipids metabolism and ATP synthesis. Among the identified proteins, two ATP synthases, two ABC transporters, a small GTPase from the SAR1 family, a PDI-like protein, a monodehydroascorbate reductase, a C2 domain-containing protein and a Wali7 domain-containing protein were found. This study is the first report on the proteins identified in the initial stage of root hair formation in barley and gives new insights into the mechanisms of root hair morphogenesis in a monocot species.  相似文献   

17.
The accumulation of betaine and the induction of betaine aldehydedehydrogenase, which catalyzes the last step in the synthesisof betaine, were analyzed in salt-stressed barley leaves. Whenhydroponically grown barley plants were transferred to a mediumthat contained 200 mM NaCl, the levels of both betaine and thetotal extractable betaine aldehyde dehydrogenase activity inthe leaves increased approximately 7-fold and 3-fold when calculatedon the basis of total leaf protein, respectively, over the courseof 7 days. Betaine aldehyde dehydrogenase activity was alsodetected in either etiolated leaves or roots of barley plantsgrown under aseptic conditions. Betaine was detected in bothetiolated leaves and roots at levels that were about 20% ofthat in green leaves when calculated on a fresh weight basis. 1 This research was supported financially by a research grantfrom the Ministry of Education, Science and Culture (63560080) (Received March 9, 1990; Accepted May 29, 1990)  相似文献   

18.
The ATP dependence of ATP-binding cassette (ABC) transporters has led to the widespread acceptance that these systems are unidirectional. Interestingly, in the presence of an inwardly directed ethidium concentration gradient in ATP-depleted cells of Lactococcus lactis, the ABC multidrug transporter LmrA mediated the reverse transport (or uptake) of ethidium with an apparent K(t) of 2.0 microm. This uptake reaction was competitively inhibited by the LmrA substrate vinblastine and was significantly reduced by an E314A substitution in the membrane domain of the transporter. Similar to efflux, LmrA-mediated ethidium uptake was inhibited by the E512Q replacement in the Walker B region of the nucleotide-binding domain of the protein, which strongly reduced its drug-stimulated ATPase activity, consistent with published observations for other ABC transporters. The notion that ethidium uptake is coupled to the catalytic cycle in LmrA was further corroborated by studies in LmrA-containing cells and proteoliposomes in which reverse transport of ethidium was associated with the net synthesis of ATP. Taken together, these data demonstrate that the conformational changes required for drug transport by LmrA are (i) not too far from equilibrium under ATP-depleted conditions to be reversed by appropriate changes in ligand concentrations and (ii) not necessarily coupled to ATP hydrolysis, but associated with a reversible catalytic cycle. These findings and their thermodynamic implications shed new light on the mechanism of energy coupling in ABC transporters and have implications for the development of new modulators that could enable reverse transport-associated drug delivery in cells through their ability to uncouple ATP binding/hydrolysis from multidrug efflux.  相似文献   

19.
20.
We have characterized the tcpgp1-like gene of Trypanosoma cruzi, a new ATP-binding cassette (ABC) transporter. tcpgp1 codes for a 1035 amino acid protein with a considerable homology to LtpgpA of Leishmania. Tcpgp1 lacks the conserved sequences corresponding to the second nucleotide-binding domain of other ABC transporters due to the insertion of the L1Tc non-LTR retrotransposon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号