首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cloned B-cell lines from a female T16H/XSxr mouse in which Tdy expression was suppressed due to X inactivation and from a male X/XSxr mouse, both of the (kxb)F1 haplotype, were examined for H-Y expression. This was determined both by their ability to act as targets for H-2k and H-2b-restricted H-Y-specific cytotoxic T cells and by their ability to stimulate the proliferation of H-2Kk, H-2Db (class I) and Ab (class II)-restricted T-cell clones. In B-cell clones from the T16H/XSxr mouse, expression of H-Y/Db exhibited partial X inactivation and only a proportion ( 30%) of the cells were targets for or stimulated H-2Db-restricted H-Y-specific T cells. In contrast, H-Y eiptopes restricted by H-2k (H-Y/Kk, H-Y/Dk) and Ab (H-Y/Ab) exhibited no X inactivation. Furthermore, no inactivation of H-Y/Db, H-Y/Ab, or H-Yk was observed in the male X/XSxr mouse. These results indicate that the T16H/XSxr female is a mosaic, as a result of the variable spread of X inactivation into the Sxr region. They further suggest that the H-Y antigen recognized in association with H-2k and H-2Db class I molecules and Ab class II molecules may be the product of more than one gene.  相似文献   

2.
Parental-to-F1-hybrid liver tissue grafts in like-sex donor-recipient combinations survive indefinitely, although several F1 recipients demonstrate an immunological response to the parental graft. Female F1 recipients, particularly those carrying theH-2 b haplotype, respond vigorously to male parental liver grafts. However F1 female responses to male parental liver tissue grafts differ substantively from the responses of parental females to syngeneic male grafts. C3H male liver grafts are rejected vigorously by F1 females as long as the F1 carries theH-2 b haplotype. These findings support previous reports of strong immunological responses to C3H H-Y antigen in female F1 and C3H.SW animals, a response which is absent in C3H females. Female F1 hybrids carrying theH-2 b haplotype do not reject grafts of B10 or B6 male liver as rapidly as do B10 or B6 parental females. This reduced F1 response may be related to the formation of hybrid antigens and consequent alteration of the anti-H-Y response. Alternatively, cells that specifically suppress the anti-H-Y response may be present in F1 hybrids. Factors responsible for suppression appear to be controlled by non-MHC antigens, at least in (OH x B6 or B10) F1 hybrids.  相似文献   

3.
Hybrid resistance (HR) is primarily controlled by the genes of the Hemopoietic histocompatibility-1 (Hh-1) locus within the H-2 complex. HR is a consequence of the Hh-1-controlled target determinants in homozygous parental strain mice and their absence in heterozygous F1 hybrid mice. To examine the mechanism that controls the Hh-1 phenotype, three independent clones of somatic cell hybrids between parental lines EL-4 (C57BL/6 origin, H-2 b ) and R1 (C58 origin, H-2 k ) were studied. The line EL-4 is Hh-1b-positive and is subject to HR by H-2 b heterozygous F1 mice, but R1 lacks the Hh-1 b allele and is not susceptible to HR. Of the three hybrid clones, F263.2 is Hh-1b-positive, whereas the other two, F262.2 and F264.2, are Hh-1-negative, as judged by these cells' capacity to compete in vivo with the grafted parental C57BL/6 bone marrow cells in the resistant (C57BL/6 × C3H)F1 mice. All three clones express the H-2b and H-2k class I antigens equally well, are susceptible to activated NK cells to the same extent, and all carry four copies of chromosome 17. However, Southern analysis reveals that clone F263.2 contains three copies of H-2 b chromosome and one H-2 k , whereas the other two clones carry two copies each of the parental chromosome 17. The results suggest that the relative copy number of specific alleles is the crucial determinanr of the Hh-1 phenotype, and render unlikely both the gene dosage hypothesis and the trans-acting dominant suppression hypothesis to account for the noncodominant expression of the Hh-1 phenotype.  相似文献   

4.
Individual mice were tested for their proliferative T-cell response to H-Y- and H-3-incompatible stimulator cells in secondary mixed lymphocyte culture. Responders expressing the H-2 bhaplotype were restricted in their response to stimulators presenting H-Y and H-3 in the context of H-2 b. Lymphocytes from individual B10 females proliferated in response to H-Y presented with I-A band D b. The ratio of I-A b/D b-restricted responses varied between individual responders, indicating significant qualitative variation between genetically identical responders. The majority of the proliferative response in all tested mice was restricted to the entire H-2 bhaplotype suggesting complementation of I-A b- and D b-region genes in presenting the H-Y antigen. Similar observations were made in the response of individual B10.LP mice to the H-3 antigen. H-3-specific, proliferating T cells were restricted to H-3 antigen presented with K bAband D bwith significant variation between individuals in their preference for H-3 plus K bAband D b. In contrast to the response to H-Y, the proliferative response to H-3 plus H-2 bcould be accounted for by the summation of the proliferative responses to H-3. plus K bAband D b. These observations demonstrate that the proliferative response to non-H-2 H antigens in the context of I-region determinants is not a sine qua non for the T-cell response to these antigens. Further, the individual qualitative and quantitative variation observed with individual genetically identical mice has strong implications for our knowledge of intrastrain variation in immune responsiveness and the characterization of inbred strains for immune responsiveness.  相似文献   

5.
The strength of the H-Y antigen on thymus cells and on skin was compared in differentH-2-congenic mouse strains using a host-versus-graft reaction popliteal lymph node assay, and skin grafts from males of parental strains grafted to F1 hybrid females. The results revealed considerable differences in the strength of the H-Y antigen among different congenic strains; these differences demonstrate the effect of theH-2-linked gene on the expression of the H-Y antigen. The linkage withH-2 was also confirmed in tests with segregating F2 generations. In the strains bearing recombinantH-2 haplotypes, the strength of the H-Y antigen is similar to that of parental strain from which the recombinant received itsK end, and the responsible gene (or genes) map to the left ofI-C. The effect of theH-2-linked gene(s) on thymus cells and skin is different. The gene linked to theK end ofH- 2b determines a strong H-Y antigen on thymus cells, but a relatively weak H-Y antigen on skin. The gene linked to theK end ofH- 2k determines a weak H-Y antigen on thymus cells, but a strong H-Y antigen on skin. The gene linked to theK end ofH- 2d determines a weak H-Y antigen on both thymus cells and skin. Our observations raise the possibility that the structural gene for the H-Y antigen is linked toH-2. Alternative (but not exclusive) explanations invoke regulatory effects ofH-2 on the expression of the H-Y antigen, possibly by means of the control of the cellular andogen receptors.  相似文献   

6.
T-cell clones specific for the synthetic polypeptide antigen poly(LPhe, LGlu)-poly(DLAla)--poly(LLys) of (C57BL/6 x C3H/HeJ)F1 origin were tested for their biological activities. One group of clones was restricted in its proliferative response to the H-2 b haplotype, the second to the H-2 k haplotype, and the third to the F1 unique Ia determinants. All the clones which proliferated in response to antigen secreted interleukin-2 (IL-2) following stimulation. The H-2 restriction of the IL-2 secretion was the same as that of the proliferation. Two of the clones tested, C.6 and C.10, could provide help to B cells in antibody production. However, the genetic restriction profile of the helper activity was less stringent than that for the proliferative response. Thus, C.6, which proliferated in the presence of F1 antigen-presenting cells only, could help B cells and accessory cells of C3H/HeJ. C.10, which was restricted in its proliferative response to the H-2 b haplotype, could collaborate with B cells and accessory cells of the H-2 k haplotype as well. The antibody response of both clones was restricted to the parental or F1 strains.Abbreviations used in this paper (T, G)-A-L poly-(LTyr, LGlu)poly(DLAla)--poly(LLys) - (Phe, G)-A--L poly(LPhe, LGlu)-poly(DLAla)--poly(LLys) - APC antigen-presenting cells - Con A concanavalin A - FCS fetal calf serum - IL-2 interleukin-2  相似文献   

7.
The immune response to the liver protein F antigen which, in the mouse, occurs in two allelic forms, is under sharp immunogenetic control in that only mice that possess the Ak molecule can respond to allo-F antigen. This response has been studied in a number of F1 hybrids between inbred strains and with recombinant inbred lines all of which express Ak, and which thus enable immune suppression effects to be detected. In the AKXL and AKXD sets, the hybrids with CBA are responders if H-2 k/H-2k, and usually nonresponders if H-2 k/H-2b or H-2 k/H-2d. Although this may be due to gene dosage effects, this cannot be the explanation for the low responsiveness of the H-2 k/H-2b relative to the H-2 k/H-2d mice found in CBA × BXD hybrids. For this, and other reasons, it seems likely that low responsiveness in any mouse possessing a responder A k allele is due to suppression, and that this is mediated by the immune suppression effects of the non-H-2 k haplotype. These H-2-mediated effects can be modified, both positively and negatively, by background genes. Thus, of the ten H-2k/H-2d members of the CBA × AKXD cross, seven are low responders and three are high responders. No other typed marker has the same strain distribution pattern at present. Major unresolved questions, therefore, concern the location and mechanism of action of the background genes and the mechanism of action of the H-2 immune suppression genes.  相似文献   

8.
It has been found that B-cell responses to male-specific antigen(s) can be clearly demonstrated by reversed plaque assays. Female mice injected with syngeneic male spleen cells showed significant increases (greater than 100 × in some strains) in the number of immunoglobulin-secreting cells in lymph nodes draining the injection site. There was a variation in B-cell responsiveness between strains and this correlated only partially with previously reported T-cell responsiveness to the H-Y antigen. C57BL (H-2 b ) mice were among the most responsive, while CBA (H-2 k ), (CBA × C57BL)F1, and BALB/c (H-2 d ) were all much less responsive. These results apparently open up a new approach to the investigation of B-cell responses to male-specific antigen(s).  相似文献   

9.
The secondary cytotoxic responses to the male-specific antigen (H-Y) in mice showH-2 restriction so that the cytotoxic female cell must share the K- and/or D-end antigen with the male target cells. The association with the K and/or D end varies with differentH-2 haplotypes,e.g., H-2 b cytotoxic cells require the H-2Db antigen(s) on the target cells, while cytotoxic cells fromH-2 b/H-2 d F1 mice sensitized toH-2 d male cells kill only male targets having H-2Kd antigen(s). This association of H-Y with appropriate K/D antigens seems to be needed also in the induction of the cytotoxic response. Of the independent haplotypes, onlyH-2 b strains are capable of making secondary anti-H-Y responses and this trait seems to be dominant,i.e., the F1 strains with oneH-2 b parent are able to produce anti-H-Y cytotoxic cells against both theH-2 b parent and the nonresponder parent. The mating of the two nonresponder strains may produce F1 mice which are responders, thus suggestingIr gene complementation. Mapping data indicates that at least one of these complementary genes is located in theI-C region fork/s complementation.  相似文献   

10.
The immunoregulation of cytotoxic T-cell responses to the male-specific antigen H-Y in mice has been found to be genetically controlled by genes of the major histocompatibility complex (H-2). Responsiveness was mainly confined to H-2 b strains, but it has also been found in recombinant strains, F1 hybrids, and chimeras that carry at least part of the H-2 b haplotype. By using a different immunization procedure it has been shown recently that an H-2 k mouse strain (CBA) is also able to mount an equivalent H-Y-specific response. We investigate here, by applying this immunization technique, the responsiveness of other H-2 k strains and of strains of other independent H-2 haplotypes. Both responders and nonresponders are found in three haplotypes: k, s, and d. The strain distribution pattern of responsiveness shows a combined influence of non-H-2 and H-2 genes. In certain strains there is a high variability in responsiveness between genetically indentical individual animals. We discuss a model of immune response (Ir) gene function which could account for these observations.  相似文献   

11.
Influenza nucleoprotein (NP) is an important target antigen for influenza A virus cross-reactive cytotoxic T cells (Tc). Here we examine the NP epitope recognized by cloned and polyclonal BALB/c Tc and the genetics of this recognition pattern. We can define NP residues 147–161 as the epitope seen in conjunction with K d , the only H-2d class I responder allele for NP restriction. H-2 d /H-2 b F1 mice (C57BL × DBA/2) primed by influenza infection lyse only H-2d target cells treated with peptide 147–161 while H-2b targets are recognized only after treatment with NP residues 365–379 (previously found to be recognized by Db restricted Tc cells). Tc cell recognition of NP peptide 147–161 is entirely dictated by expression of K d and not by other B10 or OH background genes of congenic mice. Restriction of a unique NP sequence by each responder class I major histocompatibility complex (MHC) allele suggests that antigen and class I MHC interact for Tc recognition.  相似文献   

12.
To determine the locus in theH-2 complex that affects susceptibility to the development of pulmonary adenomas in mice,H-2 congenic and recombinant strains of mice with A/Wy, BALB/c, C3H, and B10 backgrounds were subjected to treatment with urethane. The average number and the incidence of adenoma foci were recorded five months after the treatment. InH-2 congenic strains on the A/Wy background, the average number of adenoma foci per mouse was significantly higher in mice of the A/Wy, A/J, and A-Tla b (H-2 a ) strains than in A.BY (H-2 b ) mice. In BALB/c and C3H congenic strains, the strains carrying theH-2 k haplotype were more susceptible than those carrying theH-2 b haplotype. InH-2 congenic strains on the B 10 background, the average number and incidence of foci was also higher in haplotypesa, h2, k, andj than in haplotypesb, s, f, d, r, h4, i3, i5, and4. The average numbers of adenoma foci in (A/J × A.BY)F1 (H-2 a /H-2 b ) and (B10 × B10.A)F1 (H-2 b /H-2 a ) were intermediate between the numbers in the parental strains. In [B10.A (4R) × B10.A (3R)]F1 (H-2 h4 /H-2 i3 ) and [B10.A (4R) × B10.A (5R)]F1 (H-2 h4 /H-2 i5 ), the numbers of adenoma foci were higher than in resistant parental recombinants. These patterns of response to urethane matched the patterns of the immune response to lactate dehydrogenase-B (LDH-B) and immunoglobulin gamma 2a (IgG2a) proteins. These differences between mice in their susceptibility to the development of pulmonary adenomas is probably due to the polymorphism of the class II genes in theH-2 complex.  相似文献   

13.
H-2 class I antigen expression on mouse teratocarcinoma cell lines   总被引:1,自引:0,他引:1  
Immunity against PCC3 teratocarcinoma cells (129, H-2 b) was induced in allogeneic (C3H, H-2 k) mice by preimmunization with L cells (C3H, H-2 k) expressing cosmid-introduced K b or D b genes, but not with nontransfected L cells. In addition, the growth of PCC3 cells in sublethally irradiated (C3H × B6-H-2 bm1)F1 and (C3H × B6-H-2 bm13 )F1 mice bearing the K bm1 and D bm13 mutations, respectively, was either prevented, stopped, or delayed in comparison with the (C3H × B6)F1 (k × b) mice, which failed to reject the PCC3 cells. The teratocarcinoma line OC15S was exceptional because it reacted specifically with Kb- and Db-specific (but not Ib-specific) alloantisera, and because Kb- and Db-specific antibodies could be absorbed by OC15S cells. The subpopulation of OC15S cells bearing the ECMA-7 antigen characteristic for embryonic carcinoma (EC) cells was isolated by the fluorescence-activated cell sorter and was shown to react specifically with Kb- and Db-specific antisera. These experiments show that teratocarcinoma cells express antigens similar or identical to the K-and D-region products of differentiated cells. The lack of expression of class I antigens is thus neither a condition nor a consequence of the pluripotentiality of the EC cells. The exact nature of the major histocompatibility complex antigens on EC cells has yet to be established using the methods of molecular biology and biochemistry.  相似文献   

14.
The level of cell proliferation and interleukin-2 (IL-2) production observed in an anti-Mls mixed lymphocyte reaction between spleen cells from H-2 compatible, Mls incompatible mouse strains is determined by the H-2 haplotype of the mouse combination. Thus, while AKR (H-2 k) spleen cells stimulated strong M1sa responses in H-2k responder cells, AKR H-2b spleen cells stimulated no or negligible M1sa responses in responder cells from H-2 bmouse strains. This effect was observed at the levels of IL-2 production and cell proliferation. The magnitude of the response observed using F1 (H-2 k/H-2 b) responder cells was found to be a function of stimulator rather than responder cells. The poor stimulatory capacity of AKRH-2 bspleen cells was also shown not to be due to the loss of the stimulatory Mls aallele during the construction of the congenic strain from AKR and C57BL/6 parental strains. Using stimulator cells from a second series of congenic mice, we found H-2 b(strain DLLP) again to represent a poorly Mlsa stimulatory H-2 haplotype. In addition, H-2q (DBA/1) cells displayed very poor Mlsa stimulatory potential while H-2d (D1.C) cells were efficient Mlsa stimulators. Again the effect was shown to be at the level of the stimulator cells. In toto, our findings indicate that the H-2 kand H-2 dhaplotypes encode strong Mlsa stimulatory potential while the H-2 band H-2 qhaplotypes determine poor Mlsa stimulatory potential in primary in vitro responses, measured as cell proliferation and IL-2 production.Abbreviations used in this paper: CTL cytotoxic T lymphocyte - IL-1 interleukin-1 - IL-2 interleukin-2 - MLR mixed lymphocyte reaction - NMS normal mouse serum  相似文献   

15.
A major genetic determinant of natural resistance to bone marrow allografts, designated asHh-3, was mapped to theH-2K region. This gene may code for or regulate the expression of cell surface structures selectively expressed on donor hemopoietic cells and recognized by naturally occurring cytotoxic effectors. Resistance was observed as failure of donor cell growth in the spleen of irradiated 129-strain (H-2 bc ) recipients of H-2k bone marrow cells. The mapping was accomplished by substituting donor cells bearingk alleles throughout theH-2 complex with cells of recombinant mouse lines bearingk alleles at definedH-2 regions. The host antigraft reaction underlying resistance was abrogated by pretreating 129-strain mice with either rabbit antimouse lymphocyte serum or the antimacrophage agent silica. Grafting of H-2Kk cells into mice ancestrally unrelated to 129 but sharing theH-2 bc or the similarH-2 b haplotype, and intoH-2 b/k ,H-2 k/bc , andH-2 k/d F1 hybrids revealed that resistance was unique to 129 mice, since mice of the other strains, including F1 hybrids, were susceptible to the grafts. Thus,Hh-3 incompatibility was a necessary but insufficient condition for the manifestation of allogeneic resistance; other genetic factors not associated withH-2 conferred responder status to 129-strain mice and nonresponder status to D1.LP, B10.129(6M), B10, B6, and possibly to F1 hybrid mice. The possible relationships between allogeneic resistance to H-2k marrow grafts, hybrid resistance to H-2k lymphomas, and F1 hybrid antiparental H-2k cytotoxicity induced in vitro are discussed.  相似文献   

16.
The hybrid resistance (Hr) effect operates in the lymphocytic choriomeningitis (LCM) in vivo transfer model to inhibit both the level of cytotoxicity T lymphocyte (CTL) generation in spleen and the induction of inflammation in cerebrospinal fluid (CSF). The effect is seen when LCM virus-immune T cells that are homozygous for H-2D b are injected into virus-infected, immunosuppressed recipients that are heterozygous for this allele, or into radiation chimeras that express an appropriate F1 phenotype. Evidence that Hr to T -cell transfer is cell-dose-dependent and tends to diminish with age was found in both chimeric and normal F1 mice. Inhibition of the capacity of injected T cells to cause meningitis is a more sensitive measure of Hr than is the further stimulation of CTL effectors in recipient lymphoid tissue. The injection of large numbers of H-2b virus-immune T cells into (H-2 k X H-2 bF1H-2 k) virus-infected recipients did not induce any cellular extravasation into CSF, though potent H-2b-restricted CTL effectors were generated in recipient spleen. Evidence of minimal inflammatory process was found in one experiment where these chimeras were given a comparable dose of (H-2 b X H-2 d)F1 immune spleen cells. Development of this Tcell-mediated immunopathological process depends essentially on the expression of the appropriate H-2 restriction element on radiation-resistant host cells which, in this case, presumably constitute part of the physiological barrier between blood and CSF.  相似文献   

17.
The reactivity of H-2b-restricted murine T cells towards bovine insulin was reported to depend on the expression of Ia.W39, a private specificity of I-Ab, on antigen-presenting cells. Cells of male (CBA/N x B6)F1 mice carrying the mutation xid on the X chromosome lack Ia.W39 on the cell surface. These cells are unable to present bovine insulin to primed T cells derived from female (CBA/N x B6)F1 mice. We show here that spleen cells of male (CBA/N x B6)F1 hybrids served perfectly as accessory cells for the insulin-dependent induction of a proliferative response of long-term cultured T cells with (B10 x B10.BR)F1 genotype, restricted to recognizing insulin in the context of F1-unique I-A determinants. The epitope on the insulin molecule essential for stimulation was determined to depend on the glutamic acid residue in position 4 of the A chain of insulin. This contrasts with the H-2b-restricted response of B6 mice to bovine insulin, which appears to be directed at the A chain loop determinant (amino acids A8 and A10). These data suggest that distinct I-Ab-encoded structures, the expression of which is regulated independently, may serve as components of restriction elements for H-2b and (H-2b x H-2k)F1 restricted T cells, which are specific for different epitopes of bovine insulin.  相似文献   

18.
Parabiosis of adult DBA/2J (H-2 d ) mice with adult (DBA/2J× CSH/HeJ)F1 (H-2 d /H-2 k ) mice results in survival beyond 100 days in 44% of such pairs, induction ofin situ unresponsiveness to C3H/HeJ skin, and the complete takeover of the erythroid system of the F1 by parental cells. However, in vitro responsiveness to C3H/HeJ cells remains. Dye exclusion cytotoxicity assays establish the absence ofF 1 lymphoid cells in the spleens and bone marrow of both partners. The parental takeover of the erythroid system of the F1 partner requires immune recognition of the hybrid's alloantigens, because this takeover is not seen with tolerant parental cells. PartialH-2 differences (on the C3H background) influence both survival and the takeover reaction when incorporated into parabioses with DBA/2J partners. When only theK andI subregions ofH-2 were targets of the parental response, 58% of parabionts survived, with complete parental hemopoietic takeover. When onlyH-2D was the target, 83% of parabionts survived, with incomplete hemopoietic takeover. Changing the non-H-2 background of the F1 target did not significantly affect survival or takeover, while substituting a differentH-2 d parental strain (BALB/c) eliminated survival altogether.Thus the parabiont takeover reaction encompasses the lymphoid and hemopoietic systems, requires immunorecognition of the target alloantigens, and seems to require a strongH-2 difference for its induction.  相似文献   

19.
Hybrid resistance of lethally irradiated (C57BL/6 × DBA/2)F1 and (C57BL/10 × C3H)F1 hybrid mice to the engraftment of parental C57BL/6 or C57BL/10 bone marrow cells is controlled by the H-2-linked Hh-1 locus. This resistance can be specifically blocked or inhibited by the injection of irradiated spleen cells from lethally irradiated, marrow reconstituted donor mice of certain strains. By testing the ability of regenerating spleen cells from various donor strains to block the resistance, we studied the genetic requirements for the expression of putative cell-surface structures recognized in hybrid resistance to H-2b marrow cells. Strains of mice bearing informative intra-H-2 or H-2/ Qa-Tla recombinant haplotypes provided evidence that the Hh-1 locus is located telomeric to the H-2S region complement loci and centromeric to the H-2D region class I locus in the H-2 b chromosome. Two mutations that affect the class I H-2D b gene have no effect on Hh-1 b gene expression. The H-2D region of the H-2 S haplotype contains an allele of the Hh-1 locus indistinguishable from that of the H-2D b region, as judged by the phenotypes of relevant strains and F1 hybrids. Collectively these data indicate that the Hh-1 locus is distinct from the class I H-2D (L) locus in the H-2 b or H-2 s genome, and favor the view that the expression or recognition of the relevant determinants is not associated with class I gene products.Abbreviations used in this paper BM(C) bone marrow (cells) - CML cell-mediated lympholysis - CTL cytotoxic T lymphocytes - FBS fetal bovine serum - HBSS Hanks' balanced salt solution - SC spleen cells from irradiated, bone marrow-reconstituted mice Address correspondence to: Dr. I. Najamura, Department of Pathology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA  相似文献   

20.
Mice of the H-2b haplotype responded to the sequential polymer poly(Tyr-Glu-Ala-Gly) in the in vitro T-cell proliferative assay, irrespective of whether they were homozygous or heterozygous at the H-2b locus. The antibody responses of the H-2b congenic mice to this polymer were variable, with A.BY and BALB.B showing responses better than those of C57BL/6 and C57BL/10 strains. The antibody responses of the F1 progeny of (responder × nonresponder) strains of mice to this polymer are generally lower than the responder parents. F1 mice with C57BL/10 background were the poorest responders. Studies with F2 mice and backcross progenies of selective breeding of high and low antibody responder (C57BL/6 × BALB/c) F1 to high responder C57BL/6 mice indicated that both non-H-2 genes and H-2 gene dosage effects influenced the magnitude of the humoral antibody responses. Animals having low responder non-H-2 background and only half the dosage of the responder immune response genes has greatly diminished antibody responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号