首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manipulating the metabolism of glucocorticoids may serve as a useful adjunct in the treatment of breast cancer. The 11β-hydroxysteroid dehydrogenase type 2 enzyme (11βHSD2) potently inactivates glucocorticoids thereby protecting the non-selective mineralocorticoid receptor (MR) in fluid transporting tissues. In the present study, Western blot analysis showed the presence of 11βHSD2 in 66% of the breast tumor samples. The 11βHSD2 and MR are also present in the breast tumor cell line PMC42. Glycyrrhetinic acid abolished glucocorticoid metabolism and inhibited cell growth by 40%, the latter at concentrations consistent with glucocorticoid receptor (GR) and MR binding studies. Metabolism was increased by glucocorticoids, the anti-glucocorticoid RU 38486 and anti-mineralocorticoid spironolactone, while aldosterone had no effect. Neither cortisol nor aldosterone affected cell proliferation, but both RU 38486 and spironolactone caused a significant decrease in cell number. The effects of RU 38486 were only observed at micromolar concentrations and are inconsistent with an action via GR or progesterone receptor (PR). This study shows that 11βHSD2 activity and cell proliferation of PMC42 cells can be modulated via steroid receptors.  相似文献   

2.
Kinetics of association--dissociation, competition and chromatography on two different resins, all revealed the presence of a new binding site which: specifically accepts 7-alpha-propyl spirolactone (3H-RU-26752), has little affinity for aldosterone, is present only in the target tissue (rat kidney), and is wanting in a non-target organ (liver). The presence of such sites could explain syndromes of mineralocorticoid excess where even trace amounts of an unusual aldosterone analogue, with little affinity for the classical mineralocorticoid receptor, can nevertheless produce hypertension through the intervention of an entirely new and abundant receptor system. This new molecule thus forms a novel tool to understand the nature and function of the soluble mineralocorticoid receptor in target organs.  相似文献   

3.
A low-salt diet is known to decrease and salt excess to increase blood pressure in humans and rodents. Sex steroids seem to play a role in salt dependent hypertension. However, little is known about sex differences in mineralocorticoid receptor blockade between male and female rats. The objective of the work was at first to investigate the effects of a low-salt vs. a high-salt diet on blood pressure without the influence of gonadal steroids in male and female rats. Second, to determine the sex-specific effects of mineralocorticoid receptor blockade by spironolactone in high-salt and low-salt fed gonadectomized male and female animals. Normotensive male and female Wistar rats were gonadectomized and put on a low (NaCl<0.03%) or high (NaCl=4%) salt diet. On each diet animals received spironolactone or placebo. Blood pressure was measured by tail-cuff-method; 24-h urine samples were collected in metabolic cages and blood was collected for hormonal measurements. High-salt diet significantly increased systolic blood pressure in both sexes. This effect could be blocked effectively by spironolactone only in male rats. Spironolactone treatment significantly increased aldosterone levels in males and females independent of the sodium content of the diet. High sodium diet significantly increased relative kidney weight, which was not altered by spironolactone treatment. Independently of gonadal steroids a high-salt diet increased blood pressure in gonadectomized male and female rats. Spironolactone lowered blood pressure only in male not in female rats on a high-salt diet clearly indicating sex-specific effects of the mineralo-corticoid antagonist spironolactone.  相似文献   

4.
Aldosterone regulates sodium homeostasis by activating the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily. Hyperaldosteronism leads todeleterious effects on the kidney, blood vessels, and heart. Although steroidal antagonists such as spironolactone and eplerenone are clinically useful for the treatment of cardiovascular diseases, they are associated with several side effects. Finerenone, a novel nonsteroidal MR antagonist, is presently being evaluated in two clinical phase IIb trials. Here, we characterized the molecular mechanisms of action of finerenone and spironolactone at several key steps of the MR signaling pathway. Molecular modeling and mutagenesis approaches allowed identification of Ser-810 and Ala-773 as key residues for the high MR selectivity of finerenone. Moreover, we showed that, in contrast to spironolactone, which activates the S810L mutant MR responsible for a severe form of early onset hypertension, finerenone displays strict antagonistic properties. Aldosterone-dependent phosphorylation and degradation of MR are inhibited by both finerenone and spironolactone. However, automated quantification of MR subcellular distribution demonstrated that finerenone delays aldosterone-induced nuclear accumulation of MR more efficiently than spironolactone. Finally, chromatin immunoprecipitation assays revealed that, as opposed to spironolactone, finerenone inhibits MR, steroid receptor coactivator-1, and RNA polymerase II binding at the regulatory sequence of the SCNN1A gene and also remarkably reduces basal MR and steroid receptor coactivator-1 recruitment, unraveling a specific and unrecognized inactivating mechanism on MR signaling. Overall, our data demonstrate that the highly potent and selective MR antagonist finerenone specifically impairs several critical steps of the MR signaling pathway and therefore represents a promising new generation MR antagonist.  相似文献   

5.
The roles of the autonomic nervous system, renin-angiotensin system, and arginine vasopressin (AVP) during the onset of ACTH-induced hypertension were investigated in conscious sheep. Autonomic ganglion blockade or combined adrenergic and cholinergic receptor blockade demonstrated that an intact sympathetic nervous system was not essential for the development or maintenance of the hypertension. Autonomic blockade augmented the pressor response to ACTH, indicating that baroreceptor-mediated reflexes normally operate to suppress the degree of hypertension produced by ACTH. Evidence was obtained suggesting that the renin-angiotensin system and AVP may partially contribute to the maintenance of ACTH hypertension in the presence of autonomic blockade. However, the precise mechanism by which ACTH raises arterial pressure remains to be elucidated.  相似文献   

6.
The multiplication of Chlamydomonas reinhardtii wild type cells can be arrested by the spirolactone RU 26752 and this is fully reversible by the natural mineralocorticoid aldosterone. Evidence is presented for a 52 kDa protein that possesses functional DNA and ligand binding domains and tests positive for mineralocorticoid receptor-like activity by immuneprecipitation, macroaggregation, and photoaffinity. The regulation of trans-activation by steroid hormones in the animal world would therefore appear to be just as valid for the plant kingdom, thereby providing a new model for genetic analysis.  相似文献   

7.
Transgenic rats with inducible expression of the mouse Ren2 gene were used to elucidate mechanisms leading to the development of hypertension and renal injury. Ren2 transgene activation was induced by administration of a naturally occurring aryl hydrocarbon, indole-3-carbinol (100 mg/kg/day by gastric gavage). Blood pressure and renal parameters were recorded in both conscious and anesthetized (butabarbital sodium; 120 mg/kg IP) rats at selected time-points during the development of hypertension. Hypertension was evident by the second day of treatment, being preceded by reduced renal sodium excretion due to activation of the thiazide-sensitive sodium-chloride co-transporter. Renal injury was evident after the first day of transgene induction, being initially limited to the pre-glomerular vasculature. Mircoalbuminuria and tubuloinsterstitial injury developed once hypertension was established. Chronic treatment with either hydrochlorothiazide or an AT1 receptor antagonist normalized sodium reabsorption, significantly blunted hypertension and prevented renal injury. Urinary aldosterone excretion was increased ≈ 20 fold, but chronic mineralocorticoid receptor antagonism with spironolactone neither restored natriuretic capacity nor prevented hypertension. Spironolactone nevertheless ameliorated vascular damage and prevented albuminuria. This study finds activation of sodium-chloride co-transport to be a key mechanism in angiotensin II-dependent hypertension. Furthermore, renal vascular injury in this setting reflects both barotrauma and pressure-independent pathways associated with direct detrimental effects of angiotensin II and aldosterone.  相似文献   

8.
Two synthetic derivatives of spironolactone were used to examine various aspects of the mineralocorticoid receptor structure and function. Introduction of a propyl residue in the 7-position of spironolactone produced a molecule (RU 26752) that saturated the aldosterone specific receptor in the 1-10 nM range, and another, more abundant species in the 10-100 nM range which had little affinity for the natural hormone. The specificity for both sites was increased when the methoxycarbonyl group was introduced in the 7-position (ZK 91587). Neither antagonist exhibited affinity for blood serum transcortin or receptors in non-target organs like the lung and the liver. RU 26752-receptor complex was more unstable than the hormone-receptor complex at 35 degrees C but underwent comparable thermal activation as evidenced by binding to DNA cellulose and the 7 S to 4 S shift on sucrose gradients. In contrast, ZK 91587 did not permit thermal activation and greatly labilized the receptor at 35 degrees C. In ion exchange chromatography, two peaks were observed with unactivated ZK 91587-receptor complex, but RU 26752 was bound exclusively to the component eluted with high salt. Molecular filtration revealed two peaks of bound radioactivity with both antimineralocorticoids. These studies reveal important differences in the mechanism of action of two antagonists differing solely in the residue in position 7 of the spironolactone molecule. Such differences could be exploited to purify the mineralocorticoid receptor and clinically to prescribe the appropriate drug with greater precision.  相似文献   

9.
It has been proposed that an increase in CSF osmolality could be involved in the genesis of hypertension by activation of central nervous system receptors involved in cardiovascular regulation. ACTH induced hypertension in the sheep is an adrenally dependent model of steroid induced hypertension. This study reports the effect of ACTH administration (20 g/kg/day) for 5 days on the composition of cerebrospinal fluid (CSF) and blood (plasma) in conscious sheep. ACTH increased CSF and plasma osmolality within 24 h associated with parallel increases in both blood and CSF glucose concentrations and plasma and CSF sodium concentration. Plasma potassium fell within 24 h, but CSF potassium did not change over the 5 days of ACTH treatment. Neither calcium nor magnesium changed in either plasma or CSF. CSF phosphate increased and plasma phosphate decreased. CSF and plasma bicarbonate were elevated with ACTH. Plasma chloride decreased after 5 days of ACTH treatment but was not associated with a change in CSF. The relevance of the measured changes in CSF osmolality and composition to the mechanisms involved in the production of ACTH-induced hypertension will be subject of further experimentation.  相似文献   

10.
Experiments were carried out in 10 chronically catheterised fetal sheep aged 121-128 days. In 3 animals infusion of aldosterone (5 micrograms/h) caused a fall in fetal urinary Na/K ratio; an effect that was reversed by spironolactone 2.5 mg/kg followed by an infusion of 100 micrograms/h per kg. In 9 fetal sheep which had no previous treatment the same doses of spironolactone had no effect on fractional sodium excretion although the fractional excretion of potassium decreased (P less than 0.05) and the urinary sodium potassium (Na/K) ratio rose (P less than 0.05). Amiloride had a variable effect on sodium excretion but the fractional excretion of potassium decreased markedly (P less than 0.05). Thus in chronically catheterised fetal sheep, endogenous mineralocorticoid activity altered urinary potassium excretion and the urinary Na/K ratio. However this activity was low, as distal blockade with amiloride further decreased the fractional excretion of potassium and increased the urinary Na/K ratio.  相似文献   

11.
Spironolactone and eplerenone are widely used as mineralocorticoid antagonists. Spironolactone has several nonspecific actions including inhibition of androgen receptor and steroid hormone biosynthesis. While studies have shown that eplerenone does not exhibit nonspecific actions on androgen receptor, its effects on steroid hormone production have not been reported. Herein, the effects of eplerenone (0.1-30 microM) and spironolactone (0.1-30 microM) on steroid production were examined in human adrenocortical H295R cells. Spironolactone inhibited basal production of cortisol (91%) and aldosterone (53%). Treatment of H295R cells with angiotensin II (Ang II) for 24 h increased aldosterone production by 11-fold. Spironolactone inhibited Ang II stimulation of aldosterone production by 80%. Addition of pregnenolone increased aldosterone (9-fold) and cortisol (3-fold) production. Spironolactone inhibited pregnenolone metabolism to aldosterone (67%) and cortisol (74%). The inhibitory effects of spironolactone occurred at concentrations far higher than those needed to block mineralocorticoid receptor, suggesting an action directly on the enzymes involved in steroid production. In contrast, eplerenone did not inhibit basal, Ang II, forskolin, pregnenolone-stimulated cortisol, or aldosterone production. Together, these data demonstrate that opposed to spironolactone, pharmacologic concentrations of eplerenone do not inhibit adrenal cell aldosterone or cortisol production.  相似文献   

12.
Aldosterone receptor antagonist, spironolactone, has been shown to prevent remodeling of the heart in several models of left ventricular hypertrophy. The aim of the present study was to determine whether the treatment with spironolactone can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) and aortic remodeling in N(G)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Four groups of rats were investigated: control, spironolactone (200 mg/kg), L-NAME (40 mg/kg) and L-NAME + spironolactone (in corresponding dosage). Animals were studied after 5 weeks of treatment. The decrease of NO-synthase activity in the LV and kidney was associated with the development of hypertension and LV hypertrophy, with increased DNA concentration in the LV, and remodeling of the aorta in the L-NAME group. Spironolactone prevented the inhibition of NO-synthase activity in the LV and kidney and partially attenuated hypertension and LVH development and the increase in DNA concentration. However, remodeling of the aorta was not prevented by spironolactone treatment. We conclude that the aldosterone receptor antagonist spironolactone improved nitric oxide production and partially prevented hypertension and LVH development without preventing hypertrophy of the aorta in NO-deficient hypertension. The reactive growth of the heart and aorta seems to be controlled by different mechanisms in L-NAME-induced hypertension.  相似文献   

13.
11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a crucial role in converting hormonally active cortisol into inactive cortisone, conferring specificity onto the human mineralocorticoid receptor (MR). Progesterone binds with even higher affinity to the MR, but acts as an MR antagonist. How aldosterone is able to keep its function as predominant MR ligand in clinical situations with high progesterone concentrations, such as pregnancy, is not clear. We have shown in vitro that the human kidney possesses an effective enzyme system that metabolizes progesterone to inactive metabolites in a process similar to the inactivation of cortisol by 11beta-HSD2. In studies on patients with adrenal insufficiency, we have shown that the in vivo anti-mineralocorticoid activity of progesterone is diminished by inactivating metabolism of progesterone, local formation of the deoxycorticosterone mineralocorticoid from progesterone, and inhibition of 11beta-HSD2 by progesterone and its metabolites resulting in decreased inactivation of cortisol and hence increased MR binding by cortisol. The enzymes involved in progesterone metabolism are also responsible for the capability of the human kidney to convert pregnenolone to DHEA and androstenedione leading to the formation of active androgens, testosterone and 5alpha-DH-testosterone. Locally produced androgens might be responsible for the observed difference in blood pressure between men and women and higher susceptibility to hypertension in men.  相似文献   

14.
We aimed to characterize circulating microparticles in association with arterial stiffness, inflammation and endothelial dysfunction in aldosterone-salt-induced hypertension in rats and to investigate the preventive effects of red wine polyphenols. Uninephrectomized male Sprague-Dawley rats were treated with aldosterone-salt (1 µg.h−1), with or without administration of either red wine polyphenols, Provinols™ (20 mg.kg−1.day−1), or spironolactone (30 mg.kg−1.day−1) for 4 weeks. Microparticles, arterial stiffness, nitric oxide (NO) spin trapping, and mesenteric arterial function were measured. Aldosterone-salt rats showed increased microparticle levels, including those originating from platelets, endothelium and erythrocytes. Hypertension resulted in enhanced aortic stiffness accompanied by increased circulating and aortic NO levels and an upregulation of aortic inducible NO-synthase, NFκB, superoxide anions and nitrotyrosine. Flow-induced dilatation was reduced in mesenteric arteries. These effects were prevented by spironolactone. Provinols™ did not reduce arterial stiffness or systolic hypertension but had effects similar to those of spironolactone on endothelial function assessed by flow-mediated vasodilatation, microparticle generation, aortic NO levels and oxidative stress and apoptosis in the vessel wall. Neither the contractile response nor endothelium-dependent relaxation in mesenteric arteries differed between groups. The in vivo effects of Provinols™ were not mediated by mineralocorticoid receptors or changes in shear stress. In conclusion, vascular remodelling and endothelial dysfunction in aldosterone-salt-mediated hypertension are associated with increased circulating microparticles. Polyphenols prevent the enhanced release of microparticles, macrovascular inflammation and oxidative stress, and microvascular endothelial dysfunction independently of blood pressure, shear stress and mineralocorticoid receptor activation in a model of hyperaldosteronism.  相似文献   

15.
Previous studies had established that much of the biological activity of the mineralocorticoid antagonist, spironolactone, depended upon its metabolism, but little was known about the nature of spironolactone metabolites in tissues. A method employing high pressure liquid chromatography has been developed for the separation and mfeasurement of several potential metabolites of spironolactone. Incubation of spironolactone with guinea pig hepatic, adrenal, renal, or testicular microsomal preparations resulted in the production of 7α-thiospironolactone (SC-24813), a compound which is a potent mineralocorticoid antagonist and which promotes the destruction of adrenal and testicular cytochromes P-450. Identification of 7α-thiospironolactone as the tissue metabolite was confirmed by mass spectrometry. The relative rates of production of 7α-thiospironolactone by the microsomal preparations were liver > kidney > adrenal > testis. Spectral data suggest that the effects of spironolactone on adrenal cytochromes P-450 may depend, at least in part, upon its conversion to 7α-thiospironolactone. The results establish that 7α-thiospironolactone is a tissue metabolite of spironolactone and may contribute to the therapeutic actions as well as some of the side effects of the parent drug.  相似文献   

16.
Aldosterone and the vascular system   总被引:1,自引:0,他引:1  
Aldosterone can act in different tissues exerting physiological and pathological effects. At the vascular level, aldosterone affects endothelial function since administration of aldosterone impaired endothelium-dependent relaxations. In addition, the administration of mineralocorticoid receptor antagonists ameliorate relaxation to acetylcholine in models of both hypertension and atherosclerosis and in patients with heart failure. A reduction in nitric oxide levels seems to be the main mechanism underlying this effect due to a reduction in its production as well as an increase in its degradation by reactive oxygen species. Aldosterone is a pro-inflammatory factor that can participate in the vascular inflammatory process associated with different pathologies including hypertension through activation of the NFkappaB system, which mediates the vascular production of different cytokines. This mineralocorticoid also participates in the vascular remodeling observed in hypertensive rats since the administration of eplerenone improved the media-to-lumen ratio in these animals. This effect seems to be due to an increase in extracellular matrix. In summary, aldosterone through mineralocorticoid receptors can participate in the vascular damage associated with different pathologies including hypertension through its prooxidant, pro-inflammatory and profibrotic effects that triggered endothelial dysfunction, an inflammatory process and vascular remodeling.  相似文献   

17.
Ligand binding is the first step in hormone regulation of mineralocorticoid receptor (MR) activity. Here, we report multiple crystal structures of MR (NR3C2) bound to both agonist and antagonists. These structures combined with mutagenesis studies reveal that maximal receptor activation involves an intricate ligand-mediated hydrogen bond network with Asn770 which serves dual roles: stabilization of the loop preceding the C-terminal activation function-2 helix and direct contact with the hormone ligand. In addition, most activating ligands hydrogen bond to Thr945 on helix 10. Structural characterization of the naturally occurring S810L mutant explains how stabilization of a helix 3/helix 5 interaction can circumvent the requirement for this hydrogen bond network. Taken together, these results explain the potency of MR activation by aldosterone, the weak activation induced by progesterone and the antihypertensive agent spironolactone, and the binding selectivity of cortisol over cortisone.  相似文献   

18.
Corticosteroid derivatives coupled in the C3, C7 or C17 position with a long aliphatic chain were synthesized in order to select a suitable ligand for the preparation of a biospecific affinity adsorbent for mineralocorticoid receptor purification. The affinity of these derivatives for mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) was explored in rabbit kidney cytosol. In this model, aldosterone bound to a single class of receptors with high affinity (Kd 1 nM) and mineralocorticoid specificity. RU26988, a highly specific ligand for GR, did not compete for these sites. The C7 and C17 positions were found to be of crucial importance in the steroid's interaction with the mineralocorticoid receptors, since the linkage of a long side chain in these positions induced complete loss of affinity. Hence, deoxycorticosterone no longer bound to MR after 17 beta substitution with a 9-carbon aliphatic chain. This loss of affinity was not observed for glucocorticoids. The 17 beta nonylamide derivative of dexamethasone still competed for GR. Increasing the length of the C7 side of the spirolactone SC26304 suppressed its affinity for MR. Finally, C3 was an appropriate position for steroid substitution. The 3-nonylamide of carboxymethyloxime deoxycorticosterone bound to MR but not to GR, and therefore constitutes a suitable ligand for the preparation of a mineralocorticoid adsorbent.  相似文献   

19.
Physiological doses of parathyroid extract producing normal serum calcium level restore mineralocorticoid hypertension development in parathyroidectomized or thyroparathyroidectomized rats, supplemented with thyroid hormones. On the other hand, increased calcium or magnesium in dietary moderates hypertension development. Those results confirm the participation of parathyroids during mineralocorticoid hypertension.  相似文献   

20.
Two derivatives of spirolactone, synthesized in an effort to eliminate the obnoxious side effects of the native molecule, were employed to dissect various aspects of the MR structure and function in rat heart. The introduction of a propyl residue in position 7 of spirolactone produced a molecule (RU 26752) that exhibited an increased affinity for the agonist specific MR, and furthermore revealed an antagonist-specific MR population in the target organ heart but absent from nontarget lung and liver. The specificity for both sites increased when a methoxycarbonyl group was introduced in the 7 position (ZK 91587). RU 26752 labilized the MR at 35 degrees C but did not interfere with thermal activation assessed on DNA-cellulose and sucrose density gradients. ZK 91587 was even more effective in labilizing the MR and did not permit thermal activation at all. Whereas only one ionic species was observed with RU 26752 on DE-52 columns, two were evident with ZK 91587. Both antimineralocorticoids were bound to populations of two molecular sizes on Ultrogel columns. Thus, the nature of chemical substitution in the 7 position of spirolactone dramatically alters the receptor-mediated antisteroid action of the resulting molecule. Such differences may permit distinction between agonist versus the antagonist-specific receptor conformations, and could possibly be exploited for the eventual purification of the mineralocorticoid receptor from various organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号