首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nanotechnology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many π-π interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption.  相似文献   

2.
The adsorption and immobilisation of human insulin onto the bio-compatible nanosheets including graphene monoxide, silicon carbide and boron nitride nanosheets were studied by molecular dynamics simulation at the temperature of 310 K. After equilibration, heating and 100 ns production molecular dynamic runs, it was found that the insulin was adsorbed and immobilised onto the considered surfaces in a native folded state. The structural parameters, including root-mean-square deviation and fluctuation, surface accessible solvent area, radius of gyration (Rg) and the distance between the centre of the mass of immobilised protein and the surface of the considered nanosheets, were measured, analysed and discussed. The energetics of the studied systems such as the interaction energy between protein and nanosheet was also measured and addressed. The discussions were centred on the structural and energetic parameters of the protein and nanosheets, including charge density, hydrophobicity, hydrophilicity and residue polarity. The results also showed that the active site of C-termini of chain B played an important role in the adsorption process and this could be helpful in the protection of insulin in its smart delivery and release applications.  相似文献   

3.
We present ab-initio periodic Hartree–Fock calculations (crystal program) of small molecules on TiO2 and MgO. The adsorption of the molecules may be molecular or dissociative. This depends on their acid and basic properties in the gas phase. For the molecular adsorption, the molecules are adsorbed as bases on Ti(+IV) sites, the adsorption energies correlate with the proton affinities. The dissociations on the surface correlate with the gas phase cleavages: thus, the dissociation of MeOH leads to a preferential basic cleavage (the fragment HO– is adsorbed on a Ti+4 ion and the fragment Me+ is adsorbed on a O2– ion of the oxide). The opposite result is obtained with MeSH. Another important factor is the adsorbate–adsorbate interaction: favorable cases are a sequence of H-bonds for the hydroxyl groups resulting from the water dissociation and the mode of adsorption for the ammonium ions. Lateral interactions also force the adsorbed CO2 molecules to bend over the surface so that their mutual orientation resembles the geometry of the CO2 dimer. With respect to water adsorption, MgO appears to be a basic oxide. As experimentally observed, NH3 adsorbs preferentially on TiO2 and CO2 on MgO. However, this difference of reactivity should not be expressed in terms of acid vs. basic behaviour but in terms of hard and soft acidity. The MgO surface is a 'soft' acidic surface that reacts preferentially with the soft base, CO2.  相似文献   

4.
Nanoscale particles have become promising materials in many fields, such as cancer therapeutics, diagnosis, imaging, drug delivery, catalysis, as well as biosensors. In order to stimulate and facilitate these applications, there is an urgent need for the understanding of the interaction mode between the nano-particles and proteins. In this study, we investigate the orientation and adsorption between several enzymes (cytochrome c, RNase A, lysozyme) and 4 nm/11 nm silica nanoparticles (SNPs) by using molecular dynamics (MD) simulation. Our results show that three enzymes are adsorbed onto the surfaces of both 4 nm and 11 nm SNPs during our MD simulations and the small SNPs induce greater structural stabilization. The active site of cytochrome c is far away from the surface of 4 nm SNPs, while it is adsorbed onto the surface of 11 nm SNPs. We also explore the influences of different groups (-OH, -COOH, -NH2 and CH3) coated onto silica nanoparticles, which show significantly different impacts. Our molecular dynamics results indicate the selective interaction between silicon nanoparticles and enzymes, which is consistent with experimental results. Our study provides useful guides for designing/modifying nanomaterials to interact with proteins for their bio-applications.  相似文献   

5.
The secondary structures of two proteins were examined by circular dichroism spectroscopy after adsorption onto a series of organically modified silica glasses. The glasses were prepared by the sol-gel technique and were varied in hydrophobicity by incorporation of 5% methyl, propyl, trifluoropropyl, or n-hexyl silane. Both cytochrome c and apomyoglobin were found to lose secondary structure after adsorption onto the modified glasses. In the case of apomyoglobin, the α-helical content of the adsorbed protein ranged from 21% to 28%, well below the 62% helix found in solution. In contrast, these same glasses led to a striking increase in apomyoglobin structure when the protein was encapsulated within the pores during sol-gel processing: the helical content of apomyoglobin increased with increasing hydrophobicity from 18% in an unmodified glass to 67% in a 5% hexyl-modified glass. We propose that proteins preferentially adsorb onto unmodified regions of the silica surface, whereas encapsulated proteins are more susceptible to changes in surface hydration due to the proximity of the alkyl chain groups.  相似文献   

6.
7.
Little is known about the direction and specificity of protein adsorption to solid surfaces, a knowledge that is of great importance in many biotechnological applications. To resolve the direction in which a protein with known structure and surface potentials binds to negatively charged silica nanoparticles, fluorescent probes were attached to different areas on the surface of the protein human carbonic anhydrase II. By this approach it was clearly demonstrated that the adsorption of the native protein is specific to limited regions at the surface of the N-terminal domain of the protein. Furthermore, the adsorption direction is strongly pH-dependent. At pH 6.3, a histidine-rich area around position 10 is the dominating adsorption region. At higher pH values, when the histidines in this area are deprotonated, the protein is also adsorbed by a region close to position 37, which contains several lysines and arginines. Clearly the adsorption is directed by positively charged areas on the protein surface toward the negatively charged silica surface at conditions when specific binding occurs.  相似文献   

8.
Despite the wide use of the real adsorbed solution theory to predict multicomponent adsorption equilibrium, the models used for the adsorbed phase activity coefficients are usually borrowed from the gas–liquid phase equilibria. In this work, the accuracy of the Wilson and NRTL models for evaluating adsorbed phase activity coefficients is tested using a 2D-lattice model. An accurate model for adsorbed-phase activity coefficients should have no problem in fitting adsorption data obtained using this simple lattice model. The results, however, show that the commonly used Wilson and NRTL models cannot describe the adsorbed phase activity coefficients for slightly non-ideal to strong non-ideal mixtures. Therefore, until new models for adsorbed phase activity coefficients are developed, we should use existing models for liquids with care. In the second part of this work, the use of Monte Carlo simulations on a segregated 2D-lattice model, for predicting adsorption of mixtures is investigated. The segregated model assumes that the competition for adsorption occurs at isolated adsorption sites, and that the molecules from each adsorption site interact with the bulk phase independently. Two binary mixtures in two adsorbent materials were used as case studies for testing the predictions of the segregated 2D-lattice model: the binary system CO2–N2 in the hypothetical pure silica zeolite PCOD8200029, with isolated adsorption sites and normal preference for adsorption, and the binary system CO2–C3H8 in pure silica mordenite (MOR), with isolated adsorption sites and inverse site preference. The segregated 2D-lattice model provides accurate predictions for the system CO2–N2 in PCOD8200029 but fails in predicting the adsorption behaviour of CO2–C3H8 in pure silica MOR. The predictions of the segregated ideal adsorbed solution theory model are superior to those of the 2D-lattice model.  相似文献   

9.
Reversed-phase chromatography is a powerful method for separating recombinant interferon γ and one of its analogues differing only by a single amino acid residue. Structural differences of the proteins explain this separation ability as demonstrated from adsorption studies on a non-porous reversed-phase support. To reveal the structural differences occurring in the adsorbed state, two different and independent methods were employed. The variation of the retention with the slope of the linear gradient gave information about the molecular contact area of the protein with the support. For different experimental conditions, these data were correlated with the adsorbent capacities measured on an n-octadecyl-modified non-porous silica support. These supports are useful for these types of experiments because the protein is adsorbed exclusively at the external surface of the beads. Moreover, a small amount of protein is necessary to saturate the column, owing to its low capacity.  相似文献   

10.
原位椭圆偏振术研究牛血清清蛋白在固/液界面的吸附   总被引:1,自引:0,他引:1  
用原位椭圆偏振术系统研究了硅片表面因素及缓冲液环境因素对牛血清清蛋白在固/液界面吸附的影响。在生理条件下,疏水表面与亲水表面相比BSA吸附量较大。随着硅片表面电荷密度增加,BSA吸附量增加。BSA吸附量当体溶液pH值等于BSA等电点时达到最大。而随着体溶液离子强度增加,BSA吸附量亦上升。实验结果提示:除了熵驱动作用之外,硅片表面与BSA分子及BSA分子之间的静电作用在BSA吸附中起着十分重要的作用。  相似文献   

11.
Negatively charged ultrafine silica particles (average diameter 20 nm) were used as support materials for adsorption immobilization of porcine trypsin, horseradish peroxidase, and bovine catalase under various conditions, and the changes in the enzyme activities and the circular dichroism (CD) spectra of these enzymes upon adsorption were measured. Since the light scattering intensity of the ultrafine particles was very low, the activities and the CD spectra of the enzymes adsorbed on the particle surfaces could be measured. The enzymes adsorbed at pH around and above their isoelectric points (pI) showed high activities. On the other hand, the enzymes adsorbed at pHs below their pI had significantly diminished activities and showed large CD spectral changes upon adsorption. The extent of CD spectral changes in the enzymes upon adsorption correlated very closely with that of the activity reduction. Therefore, the conformational changes in enzymes upon adsorption are one of the important factors that reduce the activities of adsorbed enzymes. These results demonstrate that the ultrafine particles are not only a novel support for enzyme immobilization but also are helpful for the molecular understanding of the immobilized enzymes. Correspondence to: A. Kondo  相似文献   

12.
The kinetics of protein adsorption are studied using a generalized diffusion approach which shows that the time-determining step in the adsorption is the crossing of the kinetic barrier presented by the polymers and already adsorbed proteins. The potential of mean-force between the adsorbing protein and the polymer-protein surface changes as a function of time due to the deformation of the polymer layers as the proteins adsorb. Furthermore, the range and strength of the repulsive interaction felt by the approaching proteins increases with grafted polymer molecular weight and surface coverage. The effect of molecular weight on the kinetics is very complex and different than its role on the equilibrium adsorption isotherms. The very large kinetic barriers make the timescale for the adsorption process very long and the computational effort increases with time, thus, an approximate kinetic approach is developed. The kinetic theory is based on the knowledge that the time-determining step is crossing the potential-of-mean-force barrier. Kinetic equations for two states (adsorbed and bulk) are written where the kinetic coefficients are the product of the Boltzmann factor for the free energy of adsorption (desorption) multiplied by a preexponential factor determined from a Kramers-like theory. The predictions from the kinetic approach are in excellent quantitative agreement with the full diffusion equation solutions demonstrating that the two most important physical processes are the crossing of the barrier and the changes in the barrier with time due to the deformation of the polymer layer as the proteins adsorb/desorb. The kinetic coefficients can be calculated a priori allowing for systematic calculations over very long timescales. It is found that, in many cases where the equilibrium adsorption shows a finite value, the kinetics of the process is so slow that the experimental system will show no adsorption. This effect is particularly important at high grafted polymer surface coverage. The construction of guidelines for molecular weight/surface coverage necessary for kinetic prevention of protein adsorption in a desired timescale is shown. The time-dependent desorption is also studied by modeling how adsorbed proteins leave the surface when in contact with a pure water solution. It is found that the kinetics of desorption are very slow and depend in a nonmonotonic way in the polymer chain length. When the polymer layer thickness is shorter than the size of the protein, increasing polymer chain length, at fixed surface coverage, makes the desorption process faster. For polymer layers with thickness larger than the protein size, increases in molecular weight results in a longer time for desorption. This is due to the grafted polymers trapping the adsorbed proteins and slowing down the desorption process. These results offer a possible explanation to some experimental data on adsorption. Limitations and extension of the developed approaches for practical applications are discussed.  相似文献   

13.
Amelogenin is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein–surface interactions are critical to its function. We have previously used LRAP, a splice variant of amelogenin, as a model protein for the full-length amelogenin in solid-state NMR and neutron reflectivity studies at interfaces. In this work, we examined the adsorption behavior of LRAP in greater detail using model self-assembled monolayers containing COOH, CH3, and NH2 end groups as substrates. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline and solutions containing low concentrations of calcium and phosphate consisted of aggregates of nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and quaternary structures on the surfaces. Relatively high amounts of adsorption occurred onto the CH3 and NH2 surfaces from both buffer solutions. Adsorption was also promoted onto COOH surfaces only when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies revealed that LRAP adsorbed onto the surfaces as small subnanosphere-sized structures such as monomers or dimers. We propose that the monomers/dimers were present in solution even though they were not detected by DLS or that they adsorbed onto the surfaces by disassembling or “shedding” from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces.  相似文献   

14.
The thermodynamics and kinetics of protein adsorption are studied using a molecular theoretical approach. The cases studied include competitive adsorption from mixtures and the effect of conformational changes upon adsorption. The kinetic theory is based on a generalized diffusion equation in which the driving force for motion is the gradient of chemical potentials of the proteins. The time-dependent chemical potentials, as well as the equilibrium behavior of the system, are obtained using a molecular mean-field theory. The theory provides, within the same theoretical formulation, the diffusion and the kinetic (activated) controlled regimes. By separation of ideal and nonideal contributions to the chemical potential, the equation of motion shows a purely diffusive part and the motion of the particles in the potential of mean force resulting from the intermolecular interactions. The theory enables the calculation of the time-dependent surface coverage of proteins, the dynamic surface tension, and the structure of the adsorbed layer in contact with the approaching proteins. For the case of competitive adsorption from a solution containing a mixture of large and small proteins, a variety of different adsorption patterns are observed depending upon the bulk composition, the strength of the interaction between the particles, and the surface and size of the proteins. It is found that the experimentally observed Vroman sequence is predicted in the case that the bulk solution is at a composition with an excess of the small protein, and that the interaction between the large protein and the surface is much larger than that of the smaller protein. The effect of surface conformational changes of the adsorbed proteins in the time-dependent adsorption is studied in detail. The theory predicts regimes of constant density and dynamic surface tension that are long lived but are only intermediates before the final approach to equilibrium. The implications of the findings to the interpretation of experimental observations is discussed.  相似文献   

15.

Whole unstimulated saliva from two donors was investigated both with respect to adsorption characteristics and SDS‐induced elutability. Salivary protein adsorption onto hydroxyapatite (HA) discs was studied by means of in situ ellipsometry in the concentration range 0.1–20% saliva. The adsorbed amounts on HA were found to be similar to those on silica, but the rates of adsorption were lower. Protein adsorption was virtually unaffected by the presence of Na+, whereas Ca2+ induced nucleation of calcium phosphate at the surface, the deposition rate being influenced by the pellicle age but not by the presence of saliva in bulk solution. The SDS elutability of adsorbed pellicles was determined on HA as well as on silica surfaces. Desorption from both surfaces was found to occur in the same SDS concentration range, although a residual layer was observed on HA. The slight net positive charge and lower charge density of HA as compared to the strongly negatively charged silica, may, at least partly, account for this observation by causing a reduction in the repulsive force between protein‐surfactant complexes and the surface. Inter‐individual differences, observed in the adsorption as well as elution experiments, are thought to relate to the compositional differences observed by SDS‐PAGE.  相似文献   

16.
Soybean proteins have found uses in different nonfood applications due to their interesting properties. We report on the kinetics and extent of adsorption on silica and cellulose surfaces of glycinin and β-conglycinin, the main proteins present in soy. Quartz crystal microgravimetry (QCM) experiments indicate that soy protein adsorption is strongly affected by changes in the physicochemical environment. The affinity of glycinin and the mass adsorbed on silica and cellulose increases (by ca. 13 and 89%, respectively) with solution ionic strength (as it increases from 0 to 100 mM NaCl) due to screening of electrostatic interactions. In contrast, β-conglycinin adsorbs on the same substrates to a lower extent and the addition of electrolyte reduces adsorption (by 25 and 57%, respectively). The addition of 10 mM 2-mercaptoethanol, a denaturing agent, reduces the adsorption of both proteins with a significant effect for glycinin. This observation is explained by the cleavage of disulfide bonds which allows unfolding of the molecules and promotes dissociation into subunits that favors more compact adsorbed layer structures. In addition, adsorption of glycinin onto cellulose decreases with lowering the pH from neutral to pH 3 due to dissociation of the macromolecules, resulting in flatter adsorbed layers. The respective adsorption isotherms fit a Langmuir model and QCM shifts in energy dissipation and frequency reveal multiple-step kinetic processes indicative of changes in adlayer structure.  相似文献   

17.
Adsorption characteristics of zein protein on hydrophobic and hydrophilic surfaces have been investigated to understand the orientation changes associated with the protein structure on a surface. The protein is adsorbed by a self-assembly procedure on a monolayer-modified gold surface. It is observed that zein shows higher affinity toward hydrophilic than hydrophobic surfaces on the basis of the initial adsorption rate followed by quartz crystal microbalance studies. Reflection absorption infrared (RAIR) spectroscopic studies reveal the orientation changes associated with the adsorbed zein films. Upon adsorption, the protein is found to be denatured and the transformation of alpha-helix to beta-sheet form is inferred. This transformation is pronounced when the protein is adsorbed on hydrophobic surfaces as compared to hydrophilic surfaces. Electrochemical techniques (cyclic voltammetry and impedance techniques) are very useful in assessing the permeability of zein film. It is observed that the zein moieties adsorbed on hydrophilic surfaces are highly impermeable in nature and act as a barrier for small molecules. The topographical features of the deposits before and after adsorption are analyzed by atomic force microscopy. The protein adsorbed on hydrophilic surface shows rod- and disclike features that are likely to be the base units for the growth of cylindrical structures of zein. The thermal stability of the adsorbed zein film has been followed by variable-temperature RAIR measurements.  相似文献   

18.
The antimicrobial activity of cationic amphipathic peptides is due mainly to the adsorption of peptides onto target membranes, which can be modulated by such physicochemical parameters as charge and hydrophobicity. We investigated the structure of dermaseptin B2 (Drs B2) at the aqueous/synthetic solid support interface and its adsorption kinetics using attenuated total reflection Fourier transform infrared spectroscopy and surface plasmon resonance. We determined the conformation and affinity of Drs B2 adsorbed onto negatively charged (silica or dextran) and hydrophobic supports. Synthetic supports of differing hydrophobicity were obtained by modifying silica or gold with omega-functionalized alkylsilanes (bromo, vinyl, phenyl, methyl) or alkylthiols. The peptide molecules adsorbed onto negatively charged supports mostly had a beta-type conformation. In contrast, a monolayer of Drs B2, mainly in the alpha-helical conformation, was adsorbed irreversibly onto the hydrophobic synthetic supports. The conformational changes during formation of the adsorbed monolayer were monitored by two-dimensional Fourier transform infrared spectroscopy correlation; they showed the influence of peptide-peptide interactions on alpha-helix folding on the most hydrophobic support. The orientation of the alpha-helical Drs B2 with respect to the hydrophobic support was determined by polarized attenuated total reflection; it was around 15 +/- 5 degrees. This orientation was confirmed and illustrated by a molecular dynamics study. These combined data demonstrate that specific chemical environments influence the structure of Drs B2, which could explain the many functions of antimicrobial peptides.  相似文献   

19.
A new circular dichroism (CD) technique is presented which quantifies, in situ, the changes in protein and peptide secondary structure upon adsorption at the quartz/liquid interface. Far-UV CD spectra of adsorbed proteins were recorded from several quartz interfaces contained in a specially constructed cell. Adsorbed, oriented alpha-helical spectra were recorded from hydrophilic and hydrophobic quartz using the bee venom peptide, melittin, which can be induced into an alpha-helical, tetrameric conformation in solution. The hydrophobic quartz provides a model system for oil-in-water emulsions and cell membranes. Surface concentrations were determined by radio-counting and were dependent on the nature of the surface. The characterization of these spectra has been partly achieved using far-UV CD spectra obtained from melittin adsorbed onto hydrophilic colloidal silica particles, where orientation effects are eliminated. Analysis of these spectra reveals considerable denaturation of the helical structures upon adsorption. Surface concentrations from the silica were determined from adsorption isotherms. The surface orientation of adsorbed melittin was dependent on the state of aggregation and hence degree of helicity of the molecule. These results support a model for the mode of action of melittin in lysing membranes.  相似文献   

20.
Using a variety of spectroscopic techniques, a number of molecular functionalities have been studied in relation to the adsorption process of proteins to air-water interfaces. While ellipsometry and drop tensiometry are used to derive information on adsorbed amount and exerted surface pressure, external reflection circular dichroism, infrared, and fluorescence spectroscopy provide, next to insight in layer thickness and surface layer concentration, molecular details like structural (un)folding, local mobility, and degree of protonation of carboxylates. It is shown that the exposed hydrophobicity of the protein or chemical reactivity of solvent-exposed groups may accelerate adsorption, while increased electrostatic repulsion slows down the process. Also aggregate formation enhances the fast development of a surface pressure. A more bulky appearance of proteins lowers the collision intensity in the surface layer, and thereby the surface pressure, while it is shown to be difficult to affect protein interactions within the surface layer on basis of electrostatic interactions. This work illustrates that the adsorption properties of a protein are a combination of molecular details, rather than determined by a single one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号