首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 25 kDa subunit of the Clevage Factor Im (CFIm25) is an essential factor for messenger RNA polyadenylation in human cells. Therefore, here we investigated whether the homologous protein of Entamoeba histolytica, the protozoan responsible for human amoebiasis, might be considered as a biochemical target for parasite control. Trophozoites were cultured with bacterial double-stranded RNA molecules targeting the EhCFIm25 gene, and inhibition of mRNA and protein expression was confirmed by RT-PCR and Western blot assays, respectively. EhCFIm25 silencing was associated with a significant acceleration of cell proliferation and cell death. Moreover, trophozoites appeared as larger and multinucleated cells. These morphological changes were accompanied by a reduced mobility, and erythrophagocytosis was significantly diminished. Lastly, the knockdown of EhCFIm25 affected the poly(A) site selection in two reporter genes and revealed that EhCFIm25 stimulates the utilization of downstream poly(A) sites in E. histolytica mRNA. Overall, our data confirm that targeting the polyadenylation process represents an interesting strategy for controlling parasites, including E. histolytica. To our best knowledge, the present study is the first to have revealed the relevance of the cleavage factor CFIm25 as a biochemical target in parasites.  相似文献   

2.
In eukaryotes, polyadenylation of pre-mRNA 3´ end is essential for mRNA export, stability and translation. Taking advantage of the knowledge of genomic sequences of Entamoeba histolytica, the protozoan responsible for human amoebiasis, we previously reported the putative polyadenylation machinery of this parasite. Here, we focused on the predicted protein that has the molecular features of the 25 kDa subunit of the Cleavage Factor Im (CFIm25) from other organisms, including the Nudix (nucleoside diphosphate linked to another moiety X) domain, as well as the RNA binding domain and the PAP/PAB interacting region. The recombinant EhCFIm25 protein (rEhCFIm25) was expressed in bacteria and used to generate specific antibodies in rabbit. Subcellular localization assays showed the presence of the endogenous protein in nuclear and cytoplasmic fractions. In RNA electrophoretic mobility shift assays, rEhCFIm25 was able to form specific RNA-protein complexes with the EhPgp5 mRNA 3´ UTR used as probe. In addition, Pull-Down and LC/ESI-MS/MS tandem mass spectrometry assays evidenced that the putative EhCFIm25 was able to interact with the poly(A) polymerase (EhPAP) that is responsible for the synthesis of the poly(A) tail in other eukaryotic cells. By Far-Western experiments, we confirmed the interaction between the putative EhCFIm25 and EhPAP in E. histolytica. Taken altogether, our results showed that the putative EhCFIm25 is a conserved RNA binding protein that interacts with the poly(A) polymerase, another member of the pre-mRNA 3´ end processing machinery in this protozoan parasite.  相似文献   

3.
4.
5.
Alternative polyadenylation leads to mRNAs with variable 3′ ends. Since a 3′-untranslated region (3′-UTR) often contains cis elements that impact stability or localization of mRNA or translation, selection of poly(A) sites in a 3′-UTR is regulated in mammalian cells. However, the molecular basis for alternative poly(A) site selection within a 3′-UTR has been unclear. Here we show involvement of cleavage factor Im (CFIm) in poly(A) site selection within a 3′-UTR. CFIm is a heterodimeric 3′ end-processing complex, which functions to assemble other processing factors on pre-mRNA in vitro. We knocked down 25 kDa subunit of CFIm (CFIm25) in HeLa cells and analyzed alternative poly(A) site selection of TIMP-2, syndecan2, ERCC6 and DHFR genes by northern blotting. We observed changes in the distribution of mRNAs in CFIm25 depleted cells, suggesting a role for CFIm in alternative poly(A) site selection. Furthermore, tissue specific analysis demonstrated that the CFIm25 gene gave rise to 1.1, 2.0 and 4.6 kb mRNAs. The 4.6 kb mRNA was ubiquitously expressed, while the 1.1 and 2.0 kb mRNAs were expressed in a tissue specific manner. We found three likely poly(A) sites in the CFIm25 3′-UTR, suggesting alternative polyadenylation. Our results indicate that alternative poly(A) site selection is a well-regulated process in vivo.  相似文献   

6.
In humans, mRNA polyadenylation involves the participation of about 20 factors in four main complexes that recognize specific RNA sequences. Notably, CFIm25, CPSF73, and PAP have essential roles for poly(A) site selection, mRNA cleavage, and adenosine residues polymerization. Besides the relevance of polyadenylation for gene expression, information is scarce in intestinal protozoan parasites that threaten human health. To better understand polyadenylation in Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum, which represent leading causes of diarrhea worldwide, genomes were screened for orthologs of human factors. Results showed that Entamoeba histolytica and C. parvum have 16 and 12 proteins out of the 19 human proteins used as queries, respectively, while G. lamblia seems to have the smallest polyadenylation machinery with only six factors. Remarkably, CPSF30, CPSF73, CstF77, PABP2, and PAP, which were found in all parasites, could represent the core polyadenylation machinery. Multiple genes were detected for several proteins in Entamoeba, while gene redundancy is lower in Giardia and Cryptosporidium. Congruently with their relevance in the polyadenylation process, CPSF73 and PAP are present in all parasites, and CFIm25 is only missing in Giardia. They conserve the functional domains and predicted folding of human proteins, suggesting they may have the same roles in polyadenylation.  相似文献   

7.
8.
Assembly of a processive messenger RNA polyadenylation complex.   总被引:31,自引:6,他引:25       下载免费PDF全文
S Bienroth  W Keller    E Wahle 《The EMBO journal》1993,12(2):585-594
Polyadenylation of mRNA precursors by poly(A) polymerase depends on two specificity factors and their recognition sequences. These are cleavage and polyadenylation specificity factor (CPSF), recognizing the polyadenylation signal AAUAAA, and poly(A) binding protein II (PAB II), interacting with the growing poly(A) tail. Their effects are independent of ATP and an RNA 5'-cap. Analysis of RNA-protein interactions by non-denaturing gel electrophoresis shows that CPSF, PAB II and poly(A) polymerase form a quaternary complex with the substrate RNA that transiently stabilizes the binding of poly(A) polymerase to the RNA 3'-end. Only the complex formed from all three proteins is competent for the processive synthesis of a full-length poly(A) tail.  相似文献   

9.
In vitro RNA synthesis by purified virions of a stock of tsG16(I) was aberrant compared with that of wild-type (wt) vesicular stomatitis virus. RNA made in vitro by tsG16(I) contained a larger proportion of A residues in polyadenylic acid [poly(A)] tracts than did RNA synthesized by wt virus, tsG13(I), tsG21(II) or tsG41(IV). Experiments to determine whether the aberrant polyadenylation was correlated with the known thermolability of the tsG16(I) L protein were inconclusive. Total product RNA made by tsG16(I) was methylated to almost the same extent as wt RNA, contained the same major methylated 5' cap structure as wt RNA, and was translated as well in a reticulocyte cell-free system, yielding the same molecular weight proteins in similar ratios. Most polyadenylated [poly(A)+] RNA made by tsG16(I) was considerably larger than wt poly(A)+ RNA and richer in AMP:UMP residues; however, the protein-coding capacities of mutant and wt poly(A)+ RNAs were similar. This suggested that most mRNAs made in vitro by tsG16(I) might possess very long poly(A)+ tracts, and digestion of RNA by T1 RNase supported this. It appeared, therefore, that a virally coded component of vesicular stomatitis virus could affect polyadenylation. This could be the poly(A) polymerase itself, a protein involved in control of polyadenylation, or a protein which affects an event spatially and temporally connected with polyadenylation (such as initiation of the subsequent mRNA).  相似文献   

10.
Star-PAP is a poly (A) polymerase (PAP) that is putatively required for 3'-end cleavage and polyadenylation of a select set of pre-messenger RNAs (mRNAs), including heme oxygenase (HO-1) mRNA. To investigate the underlying mechanism, the cleavage and polyadenylation of pre-mRNA was reconstituted with nuclear lysates. siRNA knockdown of Star-PAP abolished cleavage of HO-1, and this phenotype could be rescued by recombinant Star-PAP but not PAPα. Star-PAP directly associated with cleavage and polyadenylation specificity factor (CPSF) 160 and 73 subunits and also the targeted pre-mRNA. In vitro and in vivo Star-PAP was required for the stable association of CPSF complex to pre-mRNA and then CPSF 73 specifically cleaved the mRNA at the 3'-cleavage site. This mechanism is distinct from canonical PAPα, which is recruited to the cleavage complex by interacting with CPSF 160. The data support a model where Star-PAP binds to the RNA, recruits the CPSF complex to the 3'-end of pre-mRNA and then defines cleavage by CPSF 73 and subsequent polyadenylation of its target mRNAs.  相似文献   

11.
Analysis of RNA cleavage at the adenovirus-2 L3 polyadenylation site.   总被引:31,自引:8,他引:23       下载免费PDF全文
Processing at the L3 polyadenylation site of human adenovirus-2 involves endonucleolytic cleavage generating the 3' terminal sequence -UAOH to which adenosine residues are added. This dinucleotide is 19 nucleotides downstream of the AAUAAA polyadenylation signal. The ATP analog cordycepin triphosphate (3' dATP) inhibits poly(A) synthesis, but precursor RNA is processed to give a product terminating in -UAAH. Addition of only one adenosine analog demonstrates that the initial poly(A) tract is synthesized by polymerization of single residues rather than by ligation of preformed poly(A). Cleavage is not coupled to polyadenylation since incubation with an ATP analog containing a non-hydrolyzable alpha--beta bond generates a product with a 3' terminus coincident with the -UAOH) addition site. Addition of this accurately processed RNA to a nuclear extract results in efficient polyadenylation, suggesting that downstream sequences are not required for synthesis of the poly(A) tract. Finally, processing at the L3 poly(A) site may involve both endonucleolytic and exonucleolytic activities.  相似文献   

12.
13.
Accurate cleavage and polyadenylation of exogenous RNA substrate   总被引:103,自引:0,他引:103  
C L Moore  P A Sharp 《Cell》1985,41(3):845-855
Purified precursor RNA containing the L3 polyadenylation site of late adenovirus 2 mRNA is accurately cleaved and polyadenylated when incubated with nuclear extract from HeLa cells. The reaction is very efficient; 75% of the precursor is correctly processed. Cleavage is rapidly followed by polymerization of an initial poly(A) tract of approximately 130 nucleotides. Additional adenosine residues are added during further incubation. In the presence of the ATP analog alpha-beta-methylene-adenosine 5' triphosphate, the precursor RNA is cleaved but not polyadenylated, suggesting that processing is not coupled to the synthesis of the initial poly(A) tract. In the absence of free Mg2+, a small RNA of approximately 46 nucleotides is stabilized against degradation. Fingerprint analysis suggests this RNA is produced by endonucleolytic cleavage at the L3 site. Like the in vitro splicing reaction, the in vitro polyadenylation reaction is inhibited by adding antiserum against the small nuclear ribonucleoprotein particle containing U1 RNA.  相似文献   

14.
Extracts from HeLa cell nuclei assemble RNAs containing the adenovirus type 2 L3 polyadenylation site into a number of rapidly sedimenting heterodisperse complexes. Briefly treating reaction mixtures prior to sedimentation with heparin reveals a core 25S assembly formed with substrate RNA but not an inactive RNA containing a U----C mutation in the AAUAAA hexanucleotide sequence. The requirements for assembly of this heparin-stable core complex parallel those for cleavage and polyadenylation in vitro, including a functional hexanucleotide, ATP, and a uridylate-rich tract downstream of the cleavage site. The AAUAAA and a downstream U-rich element are resistant in the assembly to attack by RNase H. The poly(A) site between the two protected elements is accessible, but is attacked more slowly than in naked RNA, suggesting that a specific factor or secondary structure is located nearby. The presence of a factor bound to the AAUAAA in the complex is independently demonstrated by immunoprecipitation of a specific T1 oligonucleotide containing the element from the 25S fraction. Precipitation of this fragment from reaction mixtures is blocked by the U----C mutation. However, neither ATP nor the downstream sequence element is required for binding of this factor in the nuclear extract, suggesting that recognition of the AAUAAA is an initial event in complex assembly.  相似文献   

15.
C Hashimoto  J A Steitz 《Cell》1986,45(4):581-591
RNAs containing the polyadenylation sites for adenovirus L3 or E2a mRNA or for SV40 early or late mRNA are substrates for cleavage and poly(A) addition in an extract of HeLa cell nuclei. When polyadenylation reactions are probed with ribonuclease T1 and antibodies directed against either the Sm protein determinant or the trimethylguanosine cap structure at the 5' end of U RNAs in small nuclear ribonucleoproteins, RNA fragments containing the AAUAAA polyadenylation signal are immunoprecipitated. The RNA cleavage step that occurs prior to poly(A) addition is inhibited by micrococcal nuclease digestion of the nuclear extract. The immunoprecipitation of fragments containing the AAUAAA sequence can be altered, but not always abolished, by pretreatment with micrococcal nuclease. We discuss the involvement of small nuclear ribonucleoproteins in the cleavage and poly(A) addition reactions that form the 3' ends of most eukaryotic mRNAs.  相似文献   

16.
Previous studies have demonstrated that Ara-ATP can inhibit poly(A) polymerase activity by competing with ATP. To elucidate the mechanism of action of this compound, its effect on the cleavage and polyadenylation of two specific substrates, SV40L and adenovirus L3 pre-mRNAs, was studied in HeLa nuclear extracts. Unlike cordycepin 5' triphosphate, Ara-ATP inhibited both cleavage and poly(A) addition. Addition of poly(A) polymerase fraction devoid of any other factors required for the processing reactions overcame the inhibitory effect on cleavage as well as polyadenylation of pre-mRNAs. These data suggest that Ara-ATP inhibits both cleavage and polyadenylation reactions by interacting with the ATP-binding site on poly(A) polymerase, the activity of which is essential for the cleavage reaction. Ara-ATP also blocked formation of the post-cleavage and polyadenylation-specific complexes, which further confirmed the inhibitory effect of the ATP analog on the two tightly coupled 3'-end processing reactions.  相似文献   

17.
18.
19.
Cleavage and polyadenylation factor (CPF) is required for the cleavage as well as for the subsequent polyadenylation reaction during 3' processing of messenger RNA precursors. Here, we have investigated the interaction of CPF and poly(A) polymerase with short RNA substrates. CPF activates poly(A) polymerase to elongate RNA primers carrying the canonical hexamer recognition signal AAUAAA. CPF specifically binds to such RNA as shown by gel mobility shift assays and competition experiments. Upon binding of CPF, two polypeptides of 35 kDa and 160 kDa can be covalently crosslinked to the RNA by irradiation with UV light. These polypeptides may correspond to the smallest and the largest subunit contained in purified CPF fractions. In addition, chemical modification-exclusion experiments demonstrate that CPF interacts directly with the AAUAAA recognition signal in the RNA. The entire hexamer signal is involved in binding of CPF since modification of any of its bases interferes with complex formation.  相似文献   

20.
We have devised a simple chromatographic procedure which isolates five polyadenylation factors that are required for polyadenylation of eukaryotic mRNA. The factors were separated from each other by fractionation of HeLa cell nuclear extract in two consecutive chromatographic steps. RNA cleavage at the L3 polyadenylation site of human adenovirus 2 required at least four factors. Addition of adenosine residues required only two of these factors. The fractionation procedure separates two components that are both likely to be poly(A) polymerases. The candidate poly(A) polymerases were interchangeable and participated during both RNA cleavage and adenosine addition. They were discriminated from each other by chromatographic properties, heat sensitivity and divalent cation requirement. We have compared our data with published information and have been able to correlate the activities that we have isolated to previously identified polyadenylation factors. However, we have not been able to assign one of the candidate poly(A) polymerases to a previously identified poly(A) polymerase. This simple fractionation procedure can be used for generating an in vitro reconstituted system for polyadenylation within a short period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号