首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells are the major antigen-presenting and antigen-priming cells of the immune system. We review the antigen-presenting and proinflammatory roles played by dendritic cells in the initiation of rheumatoid arthritis (RA) and atherosclerosis, which complicates RA. Various signals that promote the activation of NF-κB and the secretion of TNF and IL-1 drive the maturation of dendritic cells to prime self-specific responses, and drive the perpetuation of synovial inflammation. These signals may include genetic factors, infection, cigarette smoking, immunostimulatory DNA and oxidized low-density lipoprotein, with major involvement of autoantibodies. We propose that the pathogenesis of RA and atherosclerosis is intimately linked, with the vascular disease of RA driven by similar and simultaneous triggers to NF-κB.  相似文献   

2.
The multitude and abundance of macrophage-derived mediators in rheumatoid arthritis and their paracrine/autocrine effects identify macrophages as local and systemic amplifiers of disease. Although uncovering the etiology of rheumatoid arthritis remains the ultimate means to silence the pathogenetic process, efforts in understanding how activated macrophages influence disease have led to optimization strategies to selectively target macrophages by agents tailored to specific features of macrophage activation. This approach has two advantages: (a) striking the cell population that mediates/amplifies most of the irreversible tissue destruction and (b) sparing other cells that have no (or only marginal) effects on joint damage.  相似文献   

3.
Rheumatoid arthritis (RA) is one of the inflammatory joint diseases in a heterogeneous group of disorders that share features of destruction of the extracellular matrices of articular cartilage and bone. The underlying disturbance in immune regulation that is responsible for the localized joint pathology results in the release of inflammatory mediators in the synovial fluid and synovium that directly and indirectly influence cartilage homeostasis. Analysis of the breakdown products of the matrix components of joint cartilage in body fluids and quantitative imaging techniques have been used to assess the effects of the inflammatory joint disease on the local remodeling of joint structures. The role of the chondrocyte itself in cartilage destruction in the human rheumatoid joint has been difficult to address but has been inferred from studies in vitro and in animal models. This review covers current knowledge about the specific cellular and biochemical mechanisms that account for the disruption of the integrity of the cartilage matrix in RA.  相似文献   

4.
Osteoclasts are multinucleated cells of hematopoietic origin and are the primary bone resorbing cells. Numerous osteoclasts are found within the synovial tissue at sites adjacent to bone, creating resorption pits and local bone destruction. They are equipped with specific enzymes and a proton pump that enable them to degrade bone matrix and solubilize calcium, respectively. The synovial tissue of inflamed joints has a particularly high potential to accumulate osteoclasts because it harbors monocytes/macrophages, which function as osteoclast precursors, as well as cells that provide the specific molecular signals that drive osteoclast formation. Osteoclasts thus represent a link between joint inflammation and structural damage since they resorb mineralized tissue adjacent to the joint and destroy the joint architecture.  相似文献   

5.
For some time synovial fibroblasts have been regarded simply as innocent synovial cells, mainly responsible for synovial homeostasis. During the past decade, however, a body of evidence has accumulated illustrating that rheumatoid arthritis synovial fibroblasts (RASFs) are active drivers of joint destruction in rheumatoid arthritis. Details regarding the intracellular signalling cascades that result in long-term activation and synthesis of proinflammatory molecules and matrix-degrading enzymes by RASFs have been analyzed. Molecular, cellular and animal studies have identified various interactions with other synovial and inflammatory cells. This expanded knowledge of the distinct role played by RASFs in the pathophysiology of rheumatoid arthritis has moved these fascinating cells to the fore, and work to identify targeted therapies to inhibit their joint destructive potential is underway.  相似文献   

6.
Recent findings have substantiated the importance of T lymphocytes to the pathogenesis of rheumatoid arthritis (RA). Here, we review emerging data regarding genetic predisposition, spontaneous animal models of arthritis, and cell-cell interactions that implicate T cells as driving synovial inflammation and joint destruction. Information regarding the proinflammatory role of interleukin-17-producing T cells and the functional state of regulatory T cells both in animal models and in patients with RA is also discussed. In light of the overwhelming evidence that disrupted T-cell homeostasis greatly contributes to joint pathology in RA, the therapeutic potential of targeting activators of pro-inflammatory T cells or their products is compelling.  相似文献   

7.
8.
Normally the immune response is restricted to the peripheral secondary lymphoid organs. However, additional ectopic lymphoid tissue may develop at chronic sites of inflammation. In the synovium of rheumatoid arthritis patients the local production of proinflammatory cytokines seems to support the formation of a precisely structured microenvironment, which allows an antigen dependent immune response to take place. The analysis of the V-gene repertoire expressed in synovial B cells demonstrated that in the inflamed synovium a germinal centre reaction takes place. Antigen presented by a network of follicular dendritic cells may activate synovial B cells and support their differentiation into plasma cells secreting high affinity antibodies. The specificity of these antibodies remains to be determined.  相似文献   

9.
类风湿关节炎的关节滑膜病理生理机制   总被引:8,自引:0,他引:8  
类风湿关节灸(rheumatoid arthritis,RA)的主要病理特点是滑膜细胞增生,衬里层增厚,多种炎性细胞浸润,血管留形成等,这种病理改变是多种因素共同作用的结果。本文从基因突变、原癌基因活化、滑膜细胞演变、炎性细胞浸润,以及信号转导等方面,阐述其关节滑膜病理生理机制。  相似文献   

10.
B lymphocytes play several critical roles in the pathogenesis of rheumatoid arthritis. They are the source of the rheumatoid factors and anticitrullinated protein antibodies, which contribute to immune complex formation and complement activation in the joints. B cells are also very efficient antigen-presenting cells, and can contribute to T cell activation through expression of costimulatory molecules. B cells both respond to and produce the chemokines and cytokines that promote leukocyte infiltration into the joints, formation of ectopic lymphoid structures, angiogenesis, and synovial hyperplasia. The success of B cell depletion therapy in rheumatoid arthritis may depend on disruption of all these diverse functions.  相似文献   

11.
The role of B cells in rheumatoid arthritis (RA) has been debated for decades. However, recent clinical trial data indicating that depletion of B cells in RA patients is of therapeutic benefit has validated the importance of this cell type in the pathogenesis of the disease. Elucidation of the molecular basis of B cell development and activation has allowed the identification of a number of possible therapeutic targets that are appealing for drug development. This review discusses briefly a number of these molecules and the rationale for targeting them for the treatment of RA.  相似文献   

12.
Interleukin (IL-)17 is a T cell-derived pro-inflammatory cytokine produced by RA synovium. We studied the role of IL-17 in the synovium cytokine network to determine whether it can influence the inflammatory and destructive pattern characteristic of RA. Herein, we investigated whether the production and action of MMP-1 and its inhibitor TIMP-1 could be modulated by IL-17 in the presence of pro-inflammatory cytokine (IL-1) and anti-inflammatory cytokines (IL-4, IL-13, IL-10). The effect of the blockade of endogenous IL-17 on the secretion of MMP-1 and TIMP-1 by RA synovium and matrix destruction was also studied. IL-17 increased the spontaneous production of MMP-1 by synoviocytes five-fold. IL-1 was more potent since it increased MMP-1 production nine-fold. Addition of IL-4, IL-13 and IL-10 to synoviocyte cultures reduced the spontaneous production of MMP-1 and induced TIMP-1 production by synoviocytes stimulated with IL-17 or/and IL-1beta. In the presence of anti-IL-17 blocking mAb, MMP-1 production and collagenase activity by RA synovium was reduced by 50% and associated with a 50% reduction in type I collagen C-telopeptide fragments (CTX) released in the supernatants, demonstrating the direct contribution of IL-17 in destruction. IL-17 and its producing T cells appear to contribute to the inflammatory process involved in the rheumatoid lesion.  相似文献   

13.
In rheumatoid arthritis, T cells and B cells participate in the immune responses evolving in the synovial lesions. Interaction between T cells and B cells is probably antigen specific because complex microstructures typical of secondary lymphoid organs are generated. Differences between patients in forming follicles with germinal centers, T-cell-B-cell aggregates without germinal center reactions, or loosely organized T-cell-B-cell infiltrates might reflect the presence of different antigens or a heterogeneity in host response patterns to immune injury. Tertiary lymphoid microstructures in the rheumatoid lesions can enhance the sensitivity of antigen recognition, optimize the collaboration of immunoregulatory and effector cells, and support the interaction between the tissue site and the aberrant immune response. The molecular basis of lymphoid organogenesis studied in gene-targeted mice will provide clues to why the synovium is a preferred site for tertiary lymphoid tissue. B cells have a critical role in lymphoid organogenesis. Their contribution to synovial inflammation extends beyond antibody secretion and includes the activation and regulation of effector T cells.  相似文献   

14.
We have previously described enrichment of antigen-presenting HLA-DR+ nuclear RelB+ dendritic cells (DCs) in rheumatoid arthritis (RA) synovium. CD123+HLA-DR+ plasmacytoid DCs (pDCs) and their precursors have been identified in human peripheral blood (PB), lymphoid tissue, and some inflamed tissues. We hypothesized recruitment of pDCs into the inflamed RA synovial environment and their contribution as antigen-presenting cells (APCs) and inflammatory cells in RA. CD11c+ myeloid DCs and CD123+ pDCs were compared in normal and RA PB, synovial fluid (SF), and synovial tissue by flow cytometry, immunohistochemistry, and electron microscopy and were sorted for functional studies. Nuclear RelB-CD123+ DCs were located in perivascular regions of RA, in a similar frequency to nuclear RelB+CD123- DCs, but not normal synovial tissue sublining. Apart from higher expression of HLA-DR, the numbers and phenotypes of SF pDCs were similar to those of normal PB pDCs. While the APC function of PB pDCs was less efficient than that of PB myeloid DCs, RA SF pDCs efficiently activated resting allogeneic PB T cells, and high levels of IFN-γ, IL-10, and tumor necrosis factor α were produced in response to incubation of allogeneic T cells with either type of SF DCs. Thus, pDCs are recruited to RA synovial tissue and comprise an APC population distinct from the previously described nuclear RelB+ synovial DCs. pDCs may contribute significantly to the local inflammatory environment.  相似文献   

15.
The efficacy of B-cell depletion therapy in rheumatoid arthritis (RA) has led to a renewed interest in B cells and their products and the role they play in the pathogenesis of the disease. Agents blocking tumour necrosis factor (TNF) are also very effective in the treatment of RA. It has long been known that the use of anti-TNF therapy can be associated with development of anti-nuclear and anti-double-stranded DNA antibodies and, more rarely, a lupus-like syndrome. Recently, studies have been published investigating further possible effects of anti-TNF agents on B cells and whether these could contribute to their effectiveness in RA.  相似文献   

16.
Imbalance of peripheral B lymphocytes and NK cells in rheumatoid arthritis   总被引:2,自引:0,他引:2  
The study was focused on several cellular immune disorders correlated with the imbalance between peripheral blood B lymphocytes and NK cells in severe rheumatoid arthritis. By flow cytometry we calculated the proportions of T, T helper, T cytotoxic/suppressor, B lymphocytes and natural killer cells in peripheral blood. The mitogen-induced proliferation of peripheral lymphocytes was measured by tritium-labeld uridine incorporation. Experimental data highlight a connection between annomal values of the B to natural killer cells ratio and disorders of the peripheral mononuclear cells concentration. We also showed that the polyclonal proliferation capacity of peripheral lymphocytes in rheumatoid arthritis is solely related to the B to natural killer cells ratio or to the natural killer cells proportion. The study reveals a potential role of the imbalance between proportions of peripheral B lymphocytes and natural killer cells in the immune pathogenesis of rheumatoid arthritis, thus pointing out an interrelation between the adaptive and innate immune systems.  相似文献   

17.
18.
Abnormalities in the p53 tumor suppressor gene have been detected in rheumatoid arthritis (RA) and could contribute to the pathogenesis of chronic disease. To determine whether synoviocytes from invasive synovium in RA have an increased number of mutations compared with non-erosion synoviocytes, p53 cDNA subclones from fibroblast-like synoviocytes (FLS) derived from erosion and non-erosion sites of the same synovium were examined in patients requiring total joint replacement. Ten erosion FLS lines and nine non-erosion FLS lines were established from nine patients with RA. Exons 5-10 from 209 p53 subclones were sequenced (114 from erosion FLS, 95 from non-erosion FLS). Sixty percent of RA FLS cell lines and 8.6% of the p53 subclones isolated from FLS contained p53 mutations. No significant differences were observed between the erosion and non-erosion FLS with regard to the frequency or type of p53 mutation. The majority of the mutations were missense transition mutations, which are characteristic of oxidative damage. In addition, paired intact RA synovium and cultured FLS from the same joints were evaluated for p53 mutations. Matched synovium and cultured synoviocytes contained p53 mutations, although there was no overlap in the specific mutations identified in the paired samples. Clusters of p53 mutations in subclones were detected in some FLS, including one in codon 249, which is a well-recognized 'hot spot' associated with cancer. Our data are consistent with the hypothesis that p53 mutations are randomly induced by genotoxic exposure in small numbers of RA synoviocytes localized to erosion and non-erosion regions of RA synovium. The determining factor for invasiveness might be proximity to bone or cartilage rather than the presence of a p53 mutation.  相似文献   

19.
T cell activation in rheumatoid synovium is B cell dependent   总被引:31,自引:0,他引:31  
Rheumatoid arthritis results from a T cell-driven inflammation in the synovial membrane that is frequently associated with the formation of tertiary lymphoid structures. The significance of this extranodal lymphoid neogenesis is unknown. Microdissection was used to isolate CD4 T cells residing in synovial tissue T cell/B cell follicles. CD4 T cells with identical TCR sequences were represented in independent, nonadjacent follicles, suggesting recognition of the same Ag in different germinal centers. When adoptively transferred into rheumatoid arthritis synovium-SCID mouse chimeras, these CD4 T cell clones enhanced the production of IFN-gamma, IL-1beta, and TNF-alpha. In vivo activity of adoptively transferred CD4 T cells required matching of HLA-DRB1 alleles and also the presence of T cell/B cell follicles. HLA-DRB1-matched synovial tissues that were infiltrated by T cells, macrophages, and dendritic cells, but that lacked B cells, did not support the activation of adoptively transferred CD4 T cell clones, raising the possibility that B cells provided a critical function in T cell activation or harbored the relevant Ag. Dependence of T cell activation on B cells was confirmed in B cell depletion studies. Treatment of chimeric mice with anti-CD20 mAb inhibited the production of IFN-gamma and IL-1beta, indicating that APCs other than B cells could not substitute in maintaining T cell activation. The central role of B cells in synovial inflammation identifies them as excellent targets for immunosuppressive therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号