首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tooth crown morphology plays a central role in hominin systematics, but the removal of the original outer enamel surface by dental attrition often eliminates from consideration the type of detailed crown morphology that has been shown to discriminate among hominin taxa. This reduces the size of samples available for study. The enamel-dentine junction (EDJ) is the developmental precursor and primary contributor to the morphology of the unworn outer enamel surface, and its morphology is only affected after considerable attrition. In this paper, we explore whether the form of the EDJ can be used to distinguish between the mandibular molars of two southern African fossil hominins: Paranthropus (or Australopithecus) robustus and Australopithecus africanus. After micro-computed tomographic scanning the molar sample, we made high-resolution images of the EDJ and used geometric morphometrics to compare EDJ shape differences between species, in addition to documenting metameric variation along the molar row within each species. Landmarks were collected along the marginal ridge that runs between adjacent dentine horns and around the circumference of the cervix. Our results suggest that the morphology of the EDJ can distinguish lower molars of these southern African hominins, and it can discriminate first, second, and third molars within each taxon. These results confirm previous findings that the EDJ preserves taxonomically valuable shape information in worn teeth. Mean differences in EDJ shape, in particular dentine horn height, crown height, and cervix shape, are more marked between adjacent molars within each taxon than for the same molar between the two taxa.  相似文献   

2.
Hominins are a very rare component of the large-mammal fauna at Laetoli. Although no equivalent data are available for Hadar, the much higher count and relative abundance of hominins suggests that they may have been more common at the latter site. The apparent relative rarity of hominins at Laetoli may have significant implications for understanding the ecology of Australopithecus afarensis. However, it is essential to first assess the extent to which taphonomic variables might have been a contributing factor. Using data from fossil ruminants, we show that the survivability of skeletal elements at Laetoli relates to the extent to which they can resist carnivore scavenging and their likelihood of being entirely buried by volcanic ashes and tuffaceous sediments. The rarity of hominins at Laetoli is probably due in part to the influence of these two taphonomic factors. However, these factors cannot account entirely for the difference in hominin relative abundance between these two sites, and ecological differences were probably a contributing factor. The highest population densities of chimpanzees today occur in forest and closed woodland, with reduced densities in open woodland. If similar levels of population-density variation characterized A. afarensis, the differences between Hadar and Laetoli may relate to the quality/optimality of the habitats. Hadar was, in general, much more densely wooded and mesic than Laetoli, with permanent and substantial bodies of water. In contrast, Laetoli was predominantly a woodland-shrubland-grassland mosaic supported only by ephemeral streams and ponds. The apparent greater relative abundance of hominins at Hadar compared with Laetoli suggests that, like chimpanzees, A. afarensis may have been more successful in more densely wooded habitats. Compared with Hadar, Laetoli probably represented a less optimal habitat for the foraging and dietary behavior of A. afarensis, and this is reflected in their inferred lower abundance, density, and biomass.  相似文献   

3.
The timing and route of the earliest dispersal from Africa to Eastern Asia are contentious topics in the study of early human evolution because Asian hominin fossil sites with precise age constraints are very limited. Here we report new high-resolution magnetostratigraphic results that place stringent age controls on excavated hominin incisors and stone tools from the Yuanmou Basin, southwest China. The hominin-bearing layer resides in a reverse polarity magnetozone just above the upper boundary of the Olduvai subchron, yielding an estimated age of 1.7Ma. The finding represents the age of the earliest documented presence of Homo, with affinities to Homo erectus, in mainland East Asia. This age estimate is roughly the same as for H. erectus in island Southeast Asia and immediately prior to the oldest archaeological evidence in northeast Asia. Mammalian fauna and pollen obtained directly from the hominin site indicate that the Yuanmou hominins lived in a varied habitat of open vegetation with patches of bushland and forest on an alluvial fan close to a lake or swamp. The age and location are consistent with a rapid southern migration route of initial hominin populations into Eastern Asia.  相似文献   

4.
Knowledge about dietary niche is key to understanding hominin evolution, since diet influences body proportions, brain size, cognition, and habitat preference. In this study we provide ecological context for the current debate on modernity (or not) of aquatic resource exploitation by hominins. We use the Homo erectus site of Trinil as a case study to investigate how research questions on possible dietary relevance of aquatic environments can be addressed. Faunal and geochemical analysis of aquatic fossils from Trinil Hauptknochenschicht (HK) fauna demonstrate that Trinil at ∼1.5 Ma contained near-coastal rivers, lakes, swamp forests, lagoons, and marshes with minor marine influence, laterally grading into grasslands. Trinil HK environments yielded at least eleven edible mollusc species and four edible fish species that could be procured with no or minimal technology. We demonstrate that, from an ecological point of view, the default assumption should be that omnivorous hominins in coastal habitats with catchable aquatic fauna could have consumed aquatic resources. The hypothesis of aquatic exploitation can be tested with taphonomic analysis of aquatic fossils associated with hominin fossils. We show that midden-like characteristics of large bivalve shell assemblages containing Pseudodon and Elongaria from Trinil HK indicate deliberate collection by a selective agent, possibly hominin.  相似文献   

5.
Diet is key to understanding the paleoecology of early hominins. We know little about the diets of these fossil taxa, however, in part because of a limited fossil record, and in part because of limitations in methods available to infer their feeding adaptations. This paper applies a new method, dental topographic analysis, to the inference of diet from fossil hominin teeth. This approach uses laser scanning to generate digital 3D models of teeth and geographic information systems software to measure surface attributes, such as slope and occlusal relief. Because it does not rely on specific landmarks that change with wear, dental topographic analysis allows measurement and comparison of variably worn teeth, greatly increasing sample sizes compared with techniques that require unworn teeth. This study involved comparison of occlusal slope and relief of the lower second molars of Australopithecus afarensis (n=15) and early Homo (n=8) with those of Gorilla gorilla gorilla (n=47) and Pan troglodytes troglodytes (n=54). Results indicate that while all groups show reduced slope and relief in progressively more worn specimens, there are consistent differences at given wear stages among the taxa. Early Homo shows steeper slopes and more relief than chimpanzees, whereas A. afarensis shows less slope and relief than any of the other groups. The differences between the two hominin taxa are on the same order as those between the extant apes, suggesting similar degrees of difference in diet. Because these chimpanzees and gorillas differ mostly in fallback foods where they are sympatric, results suggest that the early hominins may likewise have differed mostly in fallback foods, with A. afarensis emphasizing harder, more brittle foods, and early Homo relying on tougher, more elastic foods.  相似文献   

6.
A D T Kegley  J Hemingway 《HOMO》2007,58(1):33-52
Preliminary inquires into the distribution and expression of fluctuating odontometric asymmetry (FOA), among selected fossil hominins, have revealed results that may be serviceable within studies that assess, among others, palaeobiological, evolutionary processes and events. Though several intricate statistical applications have aided in the advancement of FOA to the hominin fossil record, little is known regarding the influence of outliers and directional components on reported results. Moreover, most methods employed to test homogeneity among FOA datasets are sensitive to the assumption that underlying samples reflect Gaussian distributions. Because this assumption is often violated, alternative formulations of Levene's test statistic, which have been shown to be robust under non-normality, have been suggested. Unfortunately, previous FOA studies have failed to address their potential. Given this, we considered two areas that may influence interpretations of FOA among fossil hominin studies. Firstly, we assessed distributions of signed data (d(u)) among samples of Australopithecus africanus, Paranthropus robustus and Homo habilis for outliers and directional asymmetry to evaluate their influence on reported heterogeneity. Secondly, in an attempt to decrease the probability of falsely rejecting H(0) due to non-normality, we considered alternative estimates of central tendency for comparisons of FOA. Our study confirms the need for intrinsic scrutiny of data, as the removal of one extreme value within the buccolingual H. habilis sample produced statistically significant outcomes at the sample level, while directional asymmetry was exposed within an expanded buccolingual P. robustus sample. However, though servicing alternative measures of central tendency remains informative, except for the buccolingual P. robustus sample before the correction of directional asymmetry, replacement of the mean was not required herein. Consistent with previous investigations, significant differences between buccolingual values in apposing arcades were unique among A. africanus and P. robustus, with the latter expressing greater FOA overall. Finally, our results strengthen the assertion that the individuals sampled among H. habilis may indicate an episode of developmental compromise where external and/or internal noises are lessened through internal homeostasis.  相似文献   

7.
The proximal femur has long been used to distinguish fossil hominin taxa. Specifically, the genus Homo is said to be characterized by larger femoral heads, shorter femoral necks, and more lateral flare of the greater trochanter than are members of the genera Australopithecus or Paranthropus. Here, a digitizing arm was used to collect landmark data on recent human (n=82), chimpanzee (n=16), and gorilla (n=20) femora and casts of six fossil hominin femora in order to test whether one can discriminate extant and fossil hominid (sensu lato) femora into different taxa using three-dimensional (3D) geometric morphometric analyses. Twenty proximal femoral landmarks were chosen to best quantify the shape differences between hominin genera. These data were first subjected to Procrustes analysis. The resultant fitted coordinate values were then subjected to PCA. PC scores were used to compute a dissimilarity matrix that was subjected to cluster analyses. Results indicate that one can easily distinguish Homo, Pan, and Gorilla from each other based on proximal femur shape, and one can distinguish Pliocene and Early Pleistocene hominin femora from those of recent Homo. It is more difficult to distinguish Early Pleistocene Homo proximal femora from those of Australopithecus or Paranthropus, but cluster analyses appear to separate the fossil hominins into four groups: an early australopith cluster that is an outlier from other fossil hominins; and two clusters that are sister taxa to each other: a late australopith/Paranthropus group and an early Homo group.  相似文献   

8.
Body mass estimates for fossil hominin taxa can be obtained from suitable postcranial and cranial variables. However, the nature of the taphonomic processes that winnow the mammalian fossil record are such that these data are usually only available for the minority of the specimens that comprise the hypodigm of a species. This study has investigated the link between species mean body mass and the height and width of the mandibular corpus in a core sample of 23 species of extant simians. The slopes of the least-squares regressions for the whole sample and for the hominoid subset are similar. However, the intercepts differ so that for a given body mass, a hominoid will generally have a smaller mandible than a generalized simian. The same mandibular measurements were taken on 75 early hominin mandibles assigned to eight species groups. When mandibular corpus height- and width-derived estimates of body mass for the fossil taxa were compared with available postcranial and cranial-derived body mass estimates, the eight early hominin species sort into four groups. The first, which includes A. afarensis and A. africanus, has mandibles which follow a “generalized simian” scaling relationship. The second group, which comprises the two “robust” australopithecine species, P. boisei and P. robustus, has mandibles which scale with body mass as if they are “super-simians,” for they have substantially larger mandibles than a simian with the same body mass. The two “early Homo” species, H. habilis sensu stricto and H. rudolfensis, make up the third group. It has mandibular scaling relationships that are intermediate between that of the comparative simian sample and that of the hominoid subsample. The last of the four groups comprises H. ergaster and H. erectus; their mandibles scale with body mass as if they were hominoids, so that of the four groups they have the smallest mandibles per unit body mass. These results are related to comparable information about relative tooth size. Their relevance for attempts to interpret the dietary adaptations of early hominins are explored. Am J Phys Anthropol 105:523–538, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Several authors have proposed that papionin baboons provide appropriate analogs for early hominin niche differentiation. Savanna-dwelling baboons and australopiths both radiated around the same time after Neogene expansion of C4 grasslands, likely experiencing similar environmental changes and faced with solving similar ecological problems. We explore the insights baboons may provide into dietary ecology of savanna-occupying hominins. We compare dietary information from stable isotope data for feces, hair, and tooth dentine collagen of modern chacma baboons (Papio ursinus) with dietary data for Plio-Pleistocene papionins and hominins from South African savannas. Results confirm that, like the australopiths, baboons consume substantial amounts of C4 food sources. However, the magnitude of inter- and intraindividual variation in baboon diets across different seasons and habitats is less than that from specimens of Australopithecus africanus and Paranthropus robustus analyzed to date. Hominins also consumed greater amounts of C4 resources. Thus, though the data demonstrate that the radiation of both primate groups was closely linked with the spread of C4 grasslands, hominins were even more extreme ecological generalists than baboons were. The absence of a fixed-diet in papionins implies that it was unlikely that the more ecologically flexible hominins evolved specializations for any one food type, an interpretation consistent with recent carbon isotope, dental microwear, and ecomorphological studies. We propose that researchers place less emphasis on resolving the foods that were most important for hominin differentiation; instead, future research should focus on questions related to ecological generalism.  相似文献   

10.
We documented the spacing and distribution of perikymata on the buccal enamel surface of fossil hominin anterior teeth with reference to a sample of modern human and modern great ape teeth. A sample of 27 anterior teeth attributed to Australopithecus (5 to A. afarensis, 22 to A. africanus) and of 33 attributed to Paranthropus (6 to P. boisei, and 27 to P. robustus) were replicated and sputter-coated with gold to enable reflected light microscopy of their surface topography. Anterior teeth were then divided into 10 equal divisions of buccal crown height. The total perikymata count in each division of crown height was recorded using a binocular microscope fitted with a vernier micrometer eyepiece. Then the mean number of perikymata per millimeter was calculated for each division. Similar comparative data for a modern sample of 115 unworn human anterior teeth and 30 African great ape anterior teeth were collected from ground sections. Perikymata counts in each taxon (together with either known or presumed periodicities of perikymata) were then used to estimate enamel formation times in each division of crown height, for all anterior tooth types combined. The distributions of these estimates of time taken to form each division of crown height follow the same trends as the actual perikymata counts and differ between taxa in the same basic way. The distinction between modern African great apes and fossil hominins is particularly clear. Finally, we calculated crown formation times for each anterior tooth type by summing cuspal and lateral enamel formation times. Estimates of average crown formation times in australopiths are shorter than those calculated for both modern human and African great ape anterior teeth. The data presented here provide a better basis for exploring differences in perikymata spacing and distribution among fossil hominins, and provide the first opportunity to describe four specimens attributed to Homo in this context. Preliminary data indicate that differences may exist among the species attributed to early Homo, especially between Homo ergaster and Homo rudolfensis on the one hand, and Homo habilis sensu strico on the other.  相似文献   

11.
Reconstructing paleoecological patterns associated with hominin taxa, such as Australopithecus afarensis, is important for understanding possible evolutionary mechanisms involved in extinction and speciation events. It is critical to identify local, regional, or pan-African causal factors because patterns at these different levels may affect separate populations of the same species of hominin in unique ways. Habitat reconstructions of 12 submembers of the Hadar and Busidima formations (approximately 3.8-2.35 Ma) are presented here along with faunal differences in these submembers through time. Habitats with medium density tree and bush cover dominated the landscape through much of the earlier time period in the Hadar Formation. The lowermost Sidi Hakoma Member is the most closed habitat. The Denen Dora Member shows the influence of frequent floodplain edaphic grasslands with high abundances of reducin bovids. There is an influx of ungulates in the Kada Hadar Member (approximately 3.2--approximately 2.96 Ma) that indicates a more arid habitat populated by mammals that were recovered from earlier deposits further south in Ethiopia and Kenya. In the younger deposits from the Busidima Formation at Hadar, the landscape was open wooded grassland with some floodplain environments. The fossil assemblages from the Busidima Formation show a substantial species turnover. Although high numbers of A. afarensis specimens are associated with the lower Sidi Hakoma Member, they clearly inhabited a variety of habitats throughout the entire Hadar Formation. Australopithecus afarensis from Laetoli through Hadar times appears to have been a eurytopic species.  相似文献   

12.
Major morphological and behavioral innovations in early human evolution have traditionally been viewed as responses to conditions associated with increasing aridity and the development of extensive grassland-savanna biomes in Africa during the Plio-Pleistocene. Interpretations of paleoenvironments at the Pliocene locality of Laetoli in northern Tanzania have figured prominently in these discussions, primarily because early hominins recovered from Laetoli are generally inferred to be associated with grassland, savanna or open woodland habitats. As these reconstructions effectively extend the range of habitat preferences inferred for Pliocene hominins, and contrast with interpretations of predominantly woodland and forested ecosystems at other early hominin sites, it is worth reevaluating the paleoecology at Laetoli utilizing a new approach. Isotopic analyses were conducted on the teeth of twenty-one extinct mammalian herbivore species from the Laetolil Beds (∼ 4.3–3.5 Ma) and Upper Ndolanya Beds (∼ 2.7–2.6 Ma) to determine their diet, as well as to investigate aspects of plant physiognomy and climate. Enamel samples were obtained from multiple localities at different stratigraphic levels in order to develop a high-resolution spatio-temporal framework for identifying and characterizing dietary and ecological change and variability within the succession. In general, dietary signals at Laetoli suggest heterogeneous ecosystems with both C3 and C4 dietary plants available that could support grassland, woodland, and forested communities. All large-bodied herbivores analyzed yielded dietary signatures indicating mixed grazing/browsing strategies or exclusive reliance on C3 browse, more consistent with wooded than grassland-savanna biomes. There are no clear isotopic patterns documenting shifting ecology within the Laetolil Beds or between the Laetolil and overlying Upper Ndolanya Beds, although limited data from the U. Ndolanya Beds constrains interpretations. Comparison of the results from Laetoli with isotopic enamel profiles of other African fossil and modern communities reveals significant differences in dietary patterns. Relative to extant taxa in related lineages, carbon isotopic ranges of a number of Laetoli fossil herbivores are anomalous, indicating significantly more generalized intermediate C3/C4 feeding behaviors, perhaps indicative of dietary niches and habitat types with no close modern analogs. Enamel oxygen isotope ranges of fossil taxa from Laetoli are consistently more 18O depleted than modern E. African herbivores, possibly indicating more humid conditions during that interval in the past. These data have important implications for reconstructing dietary trajectories of mammalian herbivore lineages, as well as the evolution of ecosystems in East Africa. Isotopic analyses of similar or related taxa at other hominin fossil sites yield signatures generally consistent with Laetoli, suggesting that mammalian communities in East Africa were sampling ecosystems with similar proportions of browse and grass. Collectively, the isotopic dietary signatures indicate heterogeneous habitats with significant wooded or forested components in the Laetoli area during deposition of the Laetolil and Upper Ndolanya Beds. Early hominin foraging activity in this interval may have included access to forest or woodland biomes within this ecosystem, complicating traditional interpretations linking early human evolutionary innovations with a shift to savanna habitats.  相似文献   

13.
Australopithecus robustus is one of the best represented hominin taxa in Africa, with hundreds of specimens recovered from six fossil localities in the Bloubank Valley area of Gauteng Province, South Africa. However, precise geochronological ages are presently lacking for these fossil cave infills. In this paper, we provide a detailed geological background to a series of hominin fossils retrieved from the newly investigated deposit of Cooper's D (located partway between Sterkfontein and Kromdraai in the Bloubank Valley), including uranium-lead (U-Pb) ages for speleothem material associated with A. robustus. U-Pb dating of a basal speleothem underlying the entire deposit results in a maximum age of 1.526 (±0.088) Ma for Cooper's D. A second U-Pb date of ca. 1.4 Ma is produced from a flowstone layer above this basal speleothem; since this upper flowstone is not a capping flowstone, and fossiliferous sediments are preserved above this layer, some of the hominins might be slightly younger than the calculated age. As a result, we can broadly constrain the age of the hominins from Cooper's D to between 1.5 and approximately 1.4 Ma. Extinct fauna recorded in this comparatively young deposit raise the possibility that the Bloubank Valley region of South Africa represented a more stable environmental refugium for taxa relative to tectonically more active East Africa. The sediments of the deposit likely infilled rapidly during periods when arid conditions prevailed in the paleoenvironment, although it is unclear whether sediment deposition and bone deposition were necessarily contemporaneous occurrences. We reconstruct the paleoenvironment of Cooper's D as predominantly grassland, with nearby woodlands and a permanent water source. The hominin teeth recovered from Cooper's D are all from juveniles and can be confidently assigned to A. robustus. In addition, two juvenile mandibular fragments and an adult thoracic vertebra are tentatively attributed to A. robustus.  相似文献   

14.

Semi-natural grasslands in Japan have decreased due to management abandonment and urbanization over the last 100 years, but they remain in suburban areas in addition to rural areas. Because suburban grasslands have various land-use histories and disturbance regimes, plant and herbivorous insect communities are likely to differ among grassland types. To identify grasslands with high conservation value, we conducted a comprehensive survey of grasshoppers and plants in 150 grasslands with 5 grassland types differing in land-use history and current management in northern Chiba prefecture, Japan. We then analyzed the association of the distributions of grasshopper and plant species compositions. Our results showed that grasshoppers were classified into habitat specialists and generalists. Three out of four habitat specialists were almost exclusively found in semi-natural grasslands and vacant lots, while habitat generalists were commonly observed at the cropland margins. This habitat specialist–generalist distribution gradient corresponded well to that found in plant communities, which was probably due to current disturbance regimes. We suggest that vacant lots as well as semi-natural grasslands have high conservation value for grassland organisms of various taxa in suburban areas, and grasshoppers are candidate indicator species for monitoring grassland environments.

  相似文献   

15.
Estimating body mass/size/weight remains a crucial precursor to the evaluation of relative brain size and to achieving an understanding of brain evolution in fossil species. Despite the obvious close association between the metrics of postcranial elements and body mass a number of factors combine to reduce their utility. This study examines the feasibility of cranial variables for predicting body mass. The use of traditional regression procedures, independent contrasts analysis, and variance partitioning all support the hypothesis that cranial variables are correlated with body mass even when taking phylogeny into account, with r values typically ranging between 0.52 and 0.98. Body mass estimates derived for fossil hominins using cranial variables are similar to those obtained from previous studies using either cranial or postcranial elements. In particular, upper facial breadth and orbital height display strong predictive capability. Average body masses derived from Least Squares Regression (LSR) equations were used to calculate estimates of body mass for three hominin species. This resulted in estimates of between 30 kg and 47 kg for Australopithecus africanus, 48 kg and 52 kg for Paranthropus robustus, and 75 kg for Homo neanderthalensis. It is proposed that regression equations derived for the order primates are used to estimate body mass for archaic hominins, while hominoid based equations are most suited for Homo.  相似文献   

16.
In addition to evidence for bipedality in some fossil taxa, molar enamel thickness is among the few characters distinguishing (thick-enameled) hominins from the (thin-enameled) African apes. Despite the importance of enamel thickness in taxonomic discussions and a long history of scholarship, measurements of enamel thickness are performed almost exclusively on molars, with relatively few studies examining premolars and anterior teeth. This focus on molars has limited the scope of enamel thickness studies (i.e., there exist many fossil hominin incisors, canines, and premolars). Increasing the available sample of teeth from which to compare enamel thickness measurements from the fossil record could substantially increase our understanding of this aspect of dental biology, and perhaps facilitate greater taxonomic resolution of early hominin fossils. In this study, we report absolute and relative (size-scaled) enamel thickness measurements for the complete dentition of modern humans and chimpanzees. In accord with previous studies of molars, chimpanzees show lower relative enamel thickness at each tooth position, with little overlap between the two taxa. A significant trend of increasing enamel thickness from anterior to posterior teeth is apparent in both humans and chimpanzees, indicating that inter-taxon comparisons should be limited to the same tooth position in order to compare homologous structures. As nondestructive imaging techniques become commonplace (facilitating the examination of increasing numbers of fossil specimens), studies may maximize available samples by expanding beyond molars.  相似文献   

17.
D.W. Cameron   《HOMO》2003,54(1):1-28
Over the last half-decade or so, there has been an explosion in the recognition of hominin genera and species. We now have the late Miocene genera Orrorin and Sahelanthropus, the mid Pliocene genus Kenyanthropus, three new Pliocene species of Australopithecus (A. anamensis, A. garhi and A. bahrelghazali) and a sub species of Ardipithecus (Ar. r. kadabba) to contend with. Excepting also the more traditional species allocated to Paranthropus, Australopithecus and early Homo we are approaching around 15 species over 5 million years (excluding hominin evolution over the last one million years). Can such a large number of hominin species be justified? An examination of extant hominid (Gorilla gorilla, Pan troglodytes, and Pan paniscus) anatomical variability indicates that the range of fossil hominin variability supports the recognition of this large number of fossil species. It is also shown that not all hominins are directly related to the emergence of early Homo and as such have become extinct. Indeed the traditional australopithecine species 'A'. anamensis, 'A'. afarensis and 'A'. garhi are considered here to belong to a distinct genus Praeanthropus. They are also argued not be hominins, but rather an as yet undefined hominid group from which the more derived hominins evolved. The first hominin is represented by A. africanus or a hominin very much like it. The Paranthropus clade is defined by a derived heterochronic condition of peramorphosis, associated with sequential progenesis (contraction of successive growth stages) in brain and dental development, but a mixture of peramorphic and paedomorphic features in its craniofacial anatomy. Conversely, Kenyanthropus and Homo both share a pattern of peramorphosis, associated with sequential hypermorphosis (prolongation of successive growth stages) in brain development, and paedomorphosis processes in cranial, facial and dental development. This suggests, that these two clades share an important synapomorphy not recognised in the parsimony analyses, suggesting that they may form a sister group relationship to the exclusion of Paranthropus. This highlights the need to re-interpret phylogenetic results in terms of function and development. The rapid speciation and extinction as argued here is in keeping with other fossil groups in Africa at the Plio/Pleistocene transition. This emphasises that we must approach the pre-australopithecines and hominins as part of the endemic African fauna, and not in isolation to the evolutionary and climatic processes that were operating all around them.  相似文献   

18.
Studies of fossil hominins are traditionally taxonomically narrow and often exclude comparisons with hylobatids. Hence, results of functional analyses of postcrania, interpreted as indicating that early hominins are "African-ape-like" in their postcranial skeletons and positional behaviors, may reflect an artifact of inadequate taxonomic and morphological breadth of the comparative sample. To address this problem and better understand early hominin positional behaviors, this study included hylobatids in a comparative analysis, focusing on the hominoid elbow joint. Specifically, morphometric variables of the proximal radius were derived from measurements from a sample of all genera of extant hominoids and casts of extinct hominin species. Univariate and multivariate analyses were performed on these data. Results show that early hominins are morphologically diverse and are not, as a group, similar to any one extant group. Instead, the fossils resemble Pan, Gorilla, and Hylobates, and are not like modern Homo sapiens or Pongo. This suggests that the morphology of Hylobates may reflect a morphotype for all later hominoids, thus complicating the functional interpretations of fossil hominins. The implications of these results are that the proximal radius is not a sensitive indicator of locomotor behavior among hominoids since the morphology in hylobatids and Gorilla and Pan is similar despite widely varying positional repertoires. Furthermore, inferences of function from form in extinct hominins can be drastically affected by the comparative outgroup selection. A re-evaluation of the functional morphology of the proximal radius in early hominins is addressed.  相似文献   

19.
Molecular and paleontological evidence now point to the last common ancestor between chimpanzees and modern humans living between five and seven million years ago. Any species considered to be more closely related to humans than chimpanzees we call hominins. Traditionally, early hominins have been conspicuous by their absence in the fossil record, but discoveries in the last 20 years have finally provided us with a number of very important finds. We currently have three described genera, Ardipithecus, Orrorin and Sahelanthropus, of which Ardipithecus is extremely well represented by cranial, dental, and postcranial remains. All three genera are argued to be hominins based on reduced canine size and an increased capacity for bipedal locomotion. The evolutionary relationships between these taxa and both earlier hominoids and later hominins are somewhat disputed, but this is to be expected for any species thought to be close to the root of the hominin lineage.  相似文献   

20.
The hominin fossils of Dmanisi, Republic of Georgia, present an ideal means of assessing levels of skeletal size and shape variation in a fossil hypodigm belonging to the genus Homo because they have been recovered from a spatially and temporally restricted context. We compare variation in mandible size and shape at Dmanisi to that of extant hominoids and extinct hominins. We use height and breadth measurements of the mandibular corpus at the first molar and the symphysis to assess size, and analyze shape based on size-adjusted (using a geometric mean) versions of these four variables. We compare size and shape variation at Dmanisi relative to all possible pairs of individuals within each comparative taxon using an exact resampling procedure of the ratio of D2600 to D211 and the average Euclidean distance (AED) between D2600 and D211, respectively. Comparisons to extant hominoids were conducted at both the specific and subspecific taxonomic levels and to extinct hominins by adopting both a more, and less speciose, hominin taxonomy. Results indicate that the pattern of variation for the Dmanisi hominins does not resemble that of any living species: they exhibit significantly more size variation when compared to modern humans, and they have significantly more corpus shape variation and size variation in corpus heights and overall mandible size than any extant ape species. When compared to fossil hominins they are also more dimorphic in size (although this result is influenced by the taxonomic hypothesis applied to the hominin fossil record). These results highlight the need to re-examine expectations of levels of sexual dimorphism in members of the genus Homo and to account for marked size and shape variation between D2600 and D211 under the prevailing view of a single hominin species at Dmanisi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号