首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic conditions in Chlorella   总被引:2,自引:0,他引:2  
1. The effect of nitrate reduction and assimilation on the CO(2)/O(2) quotient of gas exchange has been used as an index of the relative rates of carbon and nitrogen assimilation in Chlorella pyrenoidosa. Changes in over-all metabolism induced by starvation, high light intensity, and nitrogen deficiency have been studied in comparison with the metabolism of cells growing at light-limiting intensities. 2. Starvation, which results in depletion of carbohydrate reserves, gives rise to a high CO(2)/O(2) quotient ( approximately 0.9) during photosynthesis and, therefore, a high C/N assimilation ratio. Starved cells apparently restore their normal C/N ratio before becoming growing cells. 3. Under photosynthesis-saturating light intensities cells show the high CO(2)/O(2) quotient (0.9) indicative of a high C/N assimilation ratio. Return to low light intensities is followed by the abnormally low CO(2)/O(2) quotient ( approximately 0.4) of a low C/N assimilation ratio. High light intensity apparently gives rise to a condition of a limiting rate of nitrogen assimilation and to an overflow metabolism analogous to that found in other microorganisms. 4. Nitrogen deficiency leads to a completely carbohydrate metabolism in short time experiments and makes still more pronounced the effects characteristic of high light intensity alone. 5. Considerations of nutritional economy sustain the experimental evidence in establishing the metabolism of cells growing under light-limiting intensities as the normal or reference metabolic condition in Chlorella.  相似文献   

2.
Predicting future plant and ecosystem responses to elevated CO(2) also requires an understanding of the role of other factors, especially soil nitrogen. This is particularly challenging for global aridlands where total N and the relative amounts of nitrate and ammonia vary both spatially and seasonally. We measured gas exchange and primary and secondary C metabolites in seedlings of two dominant aridland shrub species (Prosopis flexuosa [S America] and P. glandulosa [N America]) grown at ambient (350 ppm) or elevated (650 ppm) CO(2) and nitrogen at two levels (low [0.8 mM] and high [8.0 mM]) and at either 1 : 1 or 3 : 1 nitrate to ammonia. Whereas elevated CO(2) increased assimilation rate, water use efficiency, and primary carbon metabolites in both species, these increases were strongly contingent upon nitrogen availability. Elevated CO(2) did not increase secondary metabolites (i.e., phenolics). For these important aridland species, the effects of elevated CO(2) are strongly influenced by nitrogen availability and to a lesser extent by the relative amounts of nitrate and ammonia supplied, which underscores the importance of both the amount and chemical composition of soil nitrogen in mediating the potential responses of seedling growth and establishment of aridland plants under future CO(2)-enriched atmospheres.  相似文献   

3.
Mir NA  Salon C  Canvin DT 《Plant physiology》1995,109(4):1295-1300
The effect of NO2- assimilation on O2 exchange and CO2 fixation of the cyanobacterium, Synechococcus UTEX 625, was studied mass spectrometrically. Upon addition of 1 mM inorganic carbon to the medium, inorganic carbon pools developed and accelerated O2 photoreduction 5-fold when CO2 fixation was inhibited. During steady-state photosynthesis at saturating light, O2 uptake represented 32% of O2 evolution and balanced that portion of O2 evolution that could not be accounted for by CO2 fixation. Under these conditions, NO2- assimilation reduced O2 uptake by 59% but had no influence on CO2 fixation. NO2- assimilation decreased both CO2 fixation and O2 photoreduction at low light and and increased net O2 evolution at all light intensities. The increase in net O2 evolution observed during simultaneous assimilation of carbon and nitrogen over carbon alone was due to a suppression of O2 photoreduction by NO2- assimilation. When CO2 fixation was precluded, NO2- assimilation inhibited O2 photoreduction and stimulated O2 evolution. When the electron supply was limiting (low light), competition among O2, CO2, and NO2- for electrons could be observed, but when the electron supply was not limiting (saturating light), O2 photoreduction and/or NO2- reduction caused electron transport that was additive to that for maximum CO2 fixation.  相似文献   

4.
A single culture of Chlorella pyrenoidosa (700 ml) was grown continuously under uniform environmental conditions for a period of 11 months. During this time, the culture remained uncontaminated and its oxygen production, carbon dioxide consumption, and photosynthetic quotient (PQ = CO(2)/O(2)) were monitored on a 24-hr basis. The gas exchange characteristics of the alga were found to be extremely reliable; the average oxygen production was 1.21 +/- 0.03 ml per min, the carbon dioxide consumption was 1.09 +/- 0.03 ml per min, and the PQ was 0.90 +/- 0.01 when changes in both lamp intensity and instrument accuracy were taken into consideration. Such long-term dependability in the production of oxygen, consumption of carbon dioxide, and maintenance of a uniform PQ warrants the use of C. pyrenoidosa in a regenerative life support system for space travel.  相似文献   

5.
Light stimulates the assimilation of nitrate and nitrite by two green algae, Chlorella pyrenoidosa and Ankistrodesmus braunii. Assimilation can be observed when the algae are illuminated in the absence of carbon dioxide under both aerobic and anaerobic conditions. The rates of assimilation by Chlorella do not depend on the presence of carbon dioxide, but Ankistrodesmus assimilates nitrate and nitrite more rapidly when cultures are illuminated in the presence of carbon dioxide than in its absence. The ratios of O(2) : NO(3') and O(2) : NO(2') vary from one experiment to the other and, with the exception of Chlorella cultures reducing nitrite they are higher than the 'expected' values of 2.0 and 1.5 respectively. Oxygen evolution accompanying nitrate and nitrite by algae illuminated in the absence of carbon dioxide is completely inhibited by DCMU at concentrations of 4 × 10(-6) M. However, nitrite assimilation by both Ankistrodesmus and Chlorella and nitrate assimilation by Ankistrodesmus are less sensitive to the inhibitor.  相似文献   

6.
Cen YP  Turpin DH  Layzell DB 《Plant physiology》2001,126(4):1555-1565
Simultaneous measurements of CO(2) (CER) and O(2) (OER) exchange in roots and shoots of vegetative white lupin (Lupinus albus) were used to calculate the flow of reducing power to the synthesis of biomass that was more reduced per unit of carbon than carbohydrate. On a whole-plant basis, the diverted reductant utilization rate (DRUR which is: 4 x [CER + OER]) of shoot tissue was consistently higher than that of roots, and values obtained in the light were greater than those in the dark. An analysis of the biomass being synthesized over a 24-h period provided an estimate of whole-plant DRUR (3.5 mmol e(-) plant(-1) d(-1)), which was similar to that measured by gas exchange (3.2 mmol e(-) plant(-1) d(-1)). Given that nitrate reduction to ammonia makes up about 74% of whole-plant DRUR, root nitrate reduction in white lupin was estimated to account for less than 43% of whole-plant nitrate reduction. The approach developed here should offer a powerful tool for the noninvasive study of metabolic regulation in intact plants or plant organs.  相似文献   

7.
Ammonia assimilation by the plastidic glutamine synthetase/glutamate synthase system requires 2-oxoglutarate (2-OG) as a carbon precursor. Plastids depend on 2-OG import from the cytosol. A plastidic dicarboxylate translocator 1-[2-OG/malate translocator (DiT1)] has been identified and its substrate specificity and kinetic constants have been analyzed in vitro. However, the role of DiT1 in intact plants and its significance for ammonia assimilation remained uncertain. Here, to study the role of DiT1 in intact plants, its expression was antisense-repressed in transgenic tobacco plants. This resulted in a reduced transport capacity for 2-OG across the plastid envelope membrane. In consequence, allocation of carbon precursors to amino acid synthesis was impaired, organic acids accumulated and protein content, photosynthetic capacity and sugar pools in leaves were strongly decreased. The phenotype was consistent with a role of DIT1 in both, primary ammonia assimilation and the re-assimilation of ammonia resulting from the photorespiratory carbon cycle. Unexpectedly, the in situ rate of nitrate reduction was extremely low in alpha-DiT1 leaves, although nitrate reductase (NR) expression and activity remained high. We hypothesize that this discrepancy between extractable NR activity and in situ nitrate reduction is due to substrate limitation of NR. These findings and the severe phenotype of the antisense plants point to a crucial role of DiT1 at the interface between carbon and nitrogen metabolism.  相似文献   

8.
Metabolism of Urea by Chlorella vulgaris   总被引:2,自引:1,他引:1       下载免费PDF全文
Urea metabolism was studied with nitrogen-starved cells of Chlorella vulgaris Beijerinck var. viridis (Chodat), a green alga which apparently lacks urease. Incorporation of radioactivity from urea-(14)C into the alcohol-soluble fraction was virtually eliminated in cell suspensions flushed with 10% CO(2) in air. This same result was obtained when expected acceptors of urea carbon were replenished by adding ornithine and glucose with the urea. Several carbamyl compounds, which might be early products of urea metabolism and a source of the (14)CO(2), were not appreciably labeled. If cells were treated with cyanide at a concentration which inhibited ammonia uptake completely and urea uptake only slightly, more than half of the urea nitrogen taken up was found in the medium as ammonia. Cells under nitrogen gas in the dark were unable to take up urea or ammonia, but the normal rate of uptake was resumed in light. Since 3-(3,4-dichlorophenyl)-1,1-dimethylurea did not selectively inhibit this uptake, an active respiration supported by light-dependent oxygen evolution in these cells was ruled out. A tentative scheme for urea metabolism is proposed to consist of an initial energy-dependent splitting of urea into carbon dioxide and ammonia. This reaction in Chlorella is thought to differ from a typical urease-catalyzed reaction by the apparent requirement of a high energy compound, possibly adenosine triphosphate.  相似文献   

9.
Transgenic Flaveria bidentis (a C4 species) plants with an antisense gene directed against the mRNA of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were used to examine the relationship between the CO2 assimilation rate, Rubisco content, and carbon isotope discrimination. Reduction in the amount of Rubisco in the transgenic plants resulted in reduced CO2 assimilation rates and increased carbon isotope discrimination of leaf dry matter. The H2O exchange was similar in transgenic and wild-type plants, resulting in higher ratios of intercellular to ambient CO2 partial pressures. Carbon isotope discrimination was measured concurrently with CO2 and H2O exchange on leaves of the control plants and T1 progeny with a 40% reduction in Rubisco. From the theory of carbon isotope discrimination in the C4 species, we conclude that the reduction in the Rubisco content in the transgenic plants has led to an increase in bundle-sheath CO2 concentration and CO2 leakage from the bundle sheath; however, some down-regulation of the C4 cycle also occurred.  相似文献   

10.
The photosynthetic oxygen evolution of Chlorella vulgaris (Beijer.) cells taken from phosphate-deficient (-P) and control cultures was measured during 8 days of culture growth. Under inorganic carbon concentration (50 microM) in the measuring cell suspension and irradiance (150 micromol m(-2) s(-1)), the same as during culture growth, there were no marked differences in the photosynthetic O2 evolution rate between the -P cells and the controls. The much slower growth of -P cultures indicated that the utilization of absorbed photosynthetically active radiation (PAR) in the CO2 assimilation and biomass production were in -P cells less efficient than in the controls. Alga cells under the phosphorus stress utilized more of the absorbed PAR in the nitrate reduction than the control cells. However, under conditions of more efficient CO2 supply (inorganic carbon concentration 150 microM, introducing of exogenous carbonic anhydrase to the measuring cell suspension) and under increased irradiance (500 micromol m(-2) s(-1)), the photosynthetic O2 evolution in -P cells reached a higher rate than in the controls. The results suggest that in -P cells the restricted CO2 availability limits the total photosynthetic process. But under conditions more favorable for the CO2 uptake and under high irradiance, the -P cells may reveal a higher photosynthetic oxygen evolution rate than the controls. It is concluded that an increased potential activity of the photosynthetic light energy absorption and conversion in the C. vulgaris cells from -P cultures is a sign of acclimation to phosphorus stress by a sun-type like adaptation response of the photosynthetic apparatus.  相似文献   

11.
This study examined the impact of season-long exposure to elevated carbon dioxide (CO2) and ozone (O3), individually and in combination, on leaf chlorophyll content and gas exchange characteristics in potato (Solanum tuberosum L. cv. Bintje). Plants grown in open-top chambers were exposed to three CO2 (ambient, 550 and 680 μmol mol-1) and two O3 treatments (ambient and elevated; 25 and 65 nmol mol-1, 8 h day-1 means, respectively) between crop emergence and maturity; plants were also grown in unchambered field plots. Non-destructive measurements of chlorophyll content and visible foliar injury were made for all treatments at 2-week intervals between 43 and 95 days after emergence. Gas exchange measurements were made for all except the intermediate 550 μmol mol-1 CO2 treatment. Season-long exposure to elevated O3 under ambient CO2 reduced chlorophyll content and induced extensive visible foliar damage, but had little effect on net assimilation rate or stomatal conductance. Elevated CO2 had no significant effect on chlorophyll content, but greatly reduced the damaging impact of O3 on chlorophyll content and visible foliar damage. Light-saturated assimilation rates for leaves grown under elevated CO2 were consistently lower when measured under either elevated or ambient CO2 than in equivalent leaves grown under ambient CO2. Analysis of CO2 response curves revealed that CO2-saturated assimilation rate, maximum rates of carboxylation and electron transport and respiration decreased with time. CO2-saturated assimilation rate was reduced by elevated O3 during the early stages of the season, while respiration was significantly greater under elevated CO2 as the crop approached maturity. The physiological origins of these responses and their implications for the performance of potato in a changing climate are discussed.  相似文献   

12.
Bunce JA 《Annals of botany》2004,93(6):665-669
BACKGROUND AND AIMS: Respiration of autotrophs is an important component of their carbon balance as well as the global carbon dioxide budget. How autotrophic respiration may respond to increasing carbon dioxide concentrations, [CO(2)], in the atmosphere remains uncertain. The existence of short-term responses of respiration rates of plant leaves to [CO(2)] is controversial. Short-term responses of respiration to temperature are not disputed. This work compared responses of dark respiration and two processes dependent on the energy and reductant supplied by dark respiration, translocation and nitrate reduction, to changes in [CO(2)] and temperature. METHODS: Mature soybean leaves were exposed for a single 8-h dark period to one of five combinations of air temperature and [CO(2)], and rates of respiration, translocation and nitrate reduction were determined for each treatment. KEY RESULTS: Low temperature and elevated [CO(2)] reduced rates of respiration, translocation and nitrate reduction, while increased temperature and low [CO(2)] increased rates of all three processes. A given change in the rate of respiration was accompanied by the same change in the rate of translocation or nitrate reduction, regardless of whether the altered respiration was caused by a change in temperature or by a change in [CO(2)]. CONCLUSIONS: These results make it highly unlikely that the observed responses of respiration rate to [CO(2)] were artefacts due to errors in the measurement of carbon dioxide exchange rates in this case, and indicate that elevated [CO(2)] at night can affect translocation and nitrate reduction through its effect on respiration.  相似文献   

13.
Oxygenic photosynthesis evolved at least 2.4 Ga; all oxygenic organisms use the ribulose bisphosphate carboxylase-oxygenase (Rubisco)-photosynthetic carbon reduction cycle (PCRC) rather than one of the five other known pathways of autotrophic CO(2) assimilation. The high CO(2) and (initially) O(2)-free conditions permitted the use of a Rubisco with a high maximum specific reaction rate. As CO(2) decreased and O(2) increased, Rubisco oxygenase activity increased and 2-phosphoglycolate was produced, with the evolution of pathways recycling this inhibitory product to sugar phosphates. Changed atmospheric composition also selected for Rubiscos with higher CO(2) affinity and CO(2)/O(2) selectivity correlated with decreased CO(2)-saturated catalytic capacity and/or for CO(2)-concentrating mechanisms (CCMs). These changes increase the energy, nitrogen, phosphorus, iron, zinc and manganese cost of producing and operating Rubisco-PCRC, while biosphere oxygenation decreased the availability of nitrogen, phosphorus and iron. The majority of algae today have CCMs; the timing of their origins is unclear. If CCMs evolved in a low-CO(2) episode followed by one or more lengthy high-CO(2) episodes, CCM retention could involve a combination of environmental factors known to favour CCM retention in extant organisms that also occur in a warmer high-CO(2) ocean. More investigations, including studies of genetic adaptation, are needed.  相似文献   

14.
The microalga incorporated photobioreactor is a highly efficient biological system for converting CO2 into biomass. Using microalgal photobioreactor as CO2 mitigation system is a practical approach for elimination of waste gas from the CO2 emission. In this study, the marine microalga Chlorella sp. was cultured in a photobioreactor to assess biomass, lipid productivity and CO2 reduction. We also determined the effects of cell density and CO2 concentration on the growth of Chlorella sp. During an 8-day interval cultures in the semicontinuous cultivation, the specific growth rate and biomass of Chlorella sp. cultures in the conditions aerated 2-15% CO2 were 0.58-0.66 d(-1) and 0.76-0.87 gL(-1), respectively. At CO2 concentrations of 2%, 5%, 10% and 15%, the rate of CO2 reduction was 0.261, 0.316, 0.466 and 0.573 gh(-1), and efficiency of CO2 removal was 58%, 27%, 20% and 16%, respectively. The efficiency of CO2 removal was similar in the single photobioreactor and in the six-parallel photobioreactor. However, CO2 reduction, production of biomass, and production of lipid were six times greater in the six-parallel photobioreactor than those in the single photobioreactor. In conclusion, inhibition of microalgal growth cultured in the system with high CO2 (10-15%) aeration could be overcome via a high-density culture of microalgal inoculum that was adapted to 2% CO2. Moreover, biological reduction of CO2 in the established system could be parallely increased using the photobioreactor consisting of multiple units.  相似文献   

15.
Whereas in freely suspended cell cultures growing photoautotrophically under non-limiting carbon conditions nitrite and nitrate were simultaneously consumed after ammonium consumption was complete, in alginate-entrapped cell cultures a sequential consumption of nitrite (first) and nitrate was observed after ammonium had almost been fully removed. In this paper results are reported that show inhibition of nitrate consumption by nitrite in immobilized cells. However no inhibition of nitrate active transport was observed. The sequential consumption of ammonium, nitrite and nitrate by Ca-alginate immobilized cells is explained on the basis of local ammonium accumulation due to its photoproduction by photorespiration, that could be caused by the increase of the O2/CO2 ratio around the entrapped cells. Measurements of light-dependent oxygen production (LDOP) and activity levels of nitrogen assimilation enzymes, including nitrite reductase (NiR) and glutamine synthetase (GS) in immobilized cells, determined under photorespiration stimulating conditions, are shown that support this explanation.  相似文献   

16.
Full recovery of the ozone layer is not expected for several decades and consequently, the incoming level of solar ultraviolet-B (UV-B) will only slowly be reduced. Therefore to investigate the structural and photosynthetic responses to changes in solar UV-B we conducted a 5-year UV-B exclusion study in high arctic Greenland. During the growing season, the gas exchange (H?O and CO?) and chlorophyll-a fluorescence were measured in Vaccinium uliginosum. The leaf dry weight, carbon, nitrogen, stable carbon isotope ratio, chlorophyll and carotenoid content were determined from a late season harvest. The net photosynthesis per leaf area was on average 22% higher in 61% reduced UV-B treatment across the season, but per ground area photosynthesis was unchanged. The leaf level increase in photosynthesis was accompanied by increased leaf nitrogen, higher stomatal conductance and F(v)/F(m). There was no change in total leaf biomass, but reduction in total leaf area caused a pronounced reduction of specific leaf area and leaf area index in reduced UV-B. This demonstrates the structural changes to counterbalance the reduced plant carbon uptake seen per leaf area in ambient UV-B as the resulting plant carbon uptake per ground area was not affected. Thus, our understanding of long-term responses to UV-B reduction must take into account both leaf level processes as well as structural changes to understand the apparent robustness of plant carbon uptake per ground area. In this perspective, V. uliginosum seems able to adjust plant carbon uptake to the present amount of solar UV-B radiation in the High Arctic.  相似文献   

17.
The ternary effects of transpiration rate on the rate of assimilation of carbon dioxide through stomata, and on the calculation of the intercellular concentration of carbon dioxide, are now included in standard gas exchange studies. However, the equations for carbon isotope discrimination and for the exchange of oxygen isotopologues of carbon dioxide ignore ternary effects. Here we introduce equations to take them into account. The ternary effect is greatest when the leaf-to-air vapour mole fraction difference is greatest, and its impact is greatest on parameters derived by difference, such as the mesophyll resistance to CO(2) assimilation, r(m) . We show that the mesophyll resistance to CO(2) assimilation has been underestimated in the past. The impact is also large when there is a large difference in isotopic composition between the CO(2) inside the leaf and that in the air. We show that this partially reconciles estimates of the oxygen isotopic composition of CO(2) in the chloroplast and mitochondria in the light and in the dark, with values close to equilibrium with the estimated oxygen isotopic composition of water at the sites of evaporation within the leaf.  相似文献   

18.
Cysteine synthesis from sulfide and O-acetyl-L-serine (OAS) is a reaction interconnecting sulfate, nitrogen, and carbon assimilation. Using Lemna minor, we analyzed the effects of omission of CO(2) from the atmosphere and simultaneous application of alternative carbon sources on adenosine 5'-phosphosulfate reductase (APR) and nitrate reductase (NR), the key enzymes of sulfate and nitrate assimilation, respectively. Incubation in air without CO(2) led to severe decrease in APR and NR activities and mRNA levels, but ribulose-1,5-bisphosphate carboxylase/oxygenase was not considerably affected. Simultaneous addition of sucrose (Suc) prevented the reduction in enzyme activities, but not in mRNA levels. OAS, a known regulator of sulfate assimilation, could also attenuate the effect of missing CO(2) on APR, but did not affect NR. When the plants were subjected to normal air after a 24-h pretreatment in air without CO(2), APR and NR activities and mRNA levels recovered within the next 24 h. The addition of Suc and glucose in air without CO(2) also recovered both enzyme activities, with OAS again influenced only APR. (35)SO(4)(2-) feeding showed that treatment in air without CO(2) severely inhibited sulfate uptake and the flux through sulfate assimilation. After a resupply of normal air or the addition of Suc, incorporation of (35)S into proteins and glutathione greatly increased. OAS treatment resulted in high labeling of cysteine; the incorporation of (35)S in proteins and glutathione was much less increased compared with treatment with normal air or Suc. These results corroborate the tight interconnection of sulfate, nitrate, and carbon assimilation.  相似文献   

19.
Illumination of a colorless mutant of Chlorella vulgaris 1lh(M125) with blue light enhanced both the uptake of nitrate andthe release of ammonia. These effects were not observed underillumination with red light. The release of ammonia was alsoenhanced by the addition of methionine sulphoximine (MSX), aninhibitor of glutamine synthetase (GS). Addition of MSX to culturesin the dark increased the rate of breakdown of starch. Algal cells grown in nitrate-containing medium did not showthe aminating activity of glutamate dehydrogenase (GDH). Additionof large (millimolar) amounts of ammonia in the dark resultedin the induction of NADPH-GDH activity and, in addition, a decreasein GS activity. From these results it appears that GS catalyzesthe primary step in the assimilation of ammonia in algal cellsgrown in nitrate-containing medium. Two isoforms (GS1 and GS2)of GS have been separated by ion exchange chromatography. Theactivities of both isoforms were decreased upon the additionof ammonia. Illumination of the alga with blue light at intensities up to10,000 mW m–2 enhanced the measurable activity of GS invitro, while higher intensities were ineffective. In red lightno such effect was observed. The effects of blue light and ammonia on nitrogen metabolismin algal cells are discussed. (Received November 25, 1988; Accepted March 6, 1989)  相似文献   

20.
Photosynthetic characteristics in rice (Oryza sativa L.) leaves were examined after treatment with low temperature (15 degrees C) and high irradiance (1,500 micromol quanta m(-2) s(-1)). Decreases in quantum efficiencies in PSII (PhiPSII) and PSI (PhiPSI) and in the rate of CO2 assimilation were observed with a decrease in the maximal quantum efficiency of PSII (F(v)/F(m)) by simultaneous measurements of Chl fluorescence, P700+ absorbance and gas exchange. The decreases in PhiPSII were most highly correlated with those in CO2 assimilation. Although the initial (the activity immediately measured upon extraction) and total (the activity following pre-incubation with CO2 and Mg2+) activities of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) decreased slightly, the maximal activity (the activity following treatment with SO4(2-)) of Rubisco remained almost constant. These results indicate that the decrease in CO2 assimilation rate with the decreasing F(v)/F(m) was not caused by a decrease in Rubisco activity but rather by a decrease in RuBP regeneration capacity which resulted from the decrease in the rate of the linear electron transport. On the other hand, the decrease in PhiPSI was very small and the ratio of PhiPSI to PhiPSII increased. The de-epoxidation state of xanthophyll cycle pigments also increased. Thus, the cyclic electron transport around PSI occurred in photoinhibited leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号