首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
周茜 《现代生物医学进展》2014,14(23):4582-4585
计算机辅助骨组织工程作为一种新的研究领域可以帮助进行复杂的个性化支架的建模,设计和制造,使支架材料达到理想的物理,化学和生物学性能。本文从骨组织工程支架材料的设计路线出发,综述了计算机辅助技术在骨组织工程支架材料上面的应用,并着重探讨了计算机辅助组织建模、骨组织工程支架的设计和快速成型制造技术的最新进展。  相似文献   

2.
骨组织工程天然衍生细胞外基质材料   总被引:10,自引:0,他引:10  
细胞外基质材料的开发是骨组织工程的重要组成部分,目前,在骨组织工程中应用较多的基质材料可分为天然衍生材料、人工合成材料以及这两种材料的复合材料。介绍了各种天然衍生骨材料如煅烧骨、脱钙骨基质、脱蛋白骨基质、重组合异种骨基质和天然高分子材料如胶原、纤维蛋白、几丁质、藻酸盐及其衍生物以及珊瑚衍生骨在骨组织工程中的应用,展望了骨组织工程细胞外基质材料的未来发展方向,认为未来的理想基质材料应该是集各种材料的优点于一身,能够充分适应体内各种生理环境并能采用智能化的加工方式进行大批量生产的生物仿生材料。  相似文献   

3.
支架材料作为骨组织工程的关键三要素之一具有重要的作用。壳聚糖是唯一带正电的天然碱性多糖,其具有良好的生物相容性、生物可降解性、固有的抗菌性以及促进成骨细胞增殖、促成骨分化等优点,在骨组织工程中被广泛用来制备骨组织工程支架材料。但单纯壳聚糖制备的支架材料机械性能较差、生物响应性较低。因此,近些年来基于壳聚糖的复合支架备受人们关注。目前,人们已经研发出了不同类型的壳聚糖基复合材料,包含与无机相、有机相以及多相复合的支架材料等,并对其生物学性能进行广泛研究,主要包括支架材料在细胞体外培养中的作用、支架材料体内修复不同骨缺损的效果和模式等方面。本文对此进行综述,并对今后的研究趋势进行了初步的探讨  相似文献   

4.
近年来,组织工程技术飞速发展,将种子细胞与支架材料相复合的骨组织工程研究已成为热点,并日趋走向成熟。这一全新的治疗方案将成为解决临床上各种原因造成的骨组织缺损的最有效途径之一。骨组织工程技术包括种子细胞、支架材料和生长因子三个方面。其中,BMSCs因具有多向分化能力、强大的增殖能力以及低免疫源性被认为是最理想的种子细胞,而支架材料的种类有很多种,目前对支架材料的选择也尚有分歧。如何找到理想的支架材料是骨组织工程研究中亟待解决的重要问题。本文就组织工程中与骨髓间充质干细胞(BMSCs)相复合的各类支架材料的研究现状进行综述,这些支架材料的研究将为骨组织工程支架材料的选择提供有效依据。  相似文献   

5.
传统骨组织工程支架材料存在强度不足、生物活性低等缺点。近年来,碳纳米材料在骨再生方面展现出独特的优势。氧化石墨烯(graphene oxide, GO)是一种具有代表性的二维碳纳米材料,作为石墨烯的氧化形式,GO具有优异的力学性能、良好的生物相容性、大比表面积、易于改性等特点。GO不仅能够直接促进干细胞黏附、增殖和分化,还可以改善传统支架的机械性能、生物活性、抗菌能力、免疫调节能力等,基于GO的复合材料有望成为理想的骨再生支架。综述GO的物理化学性能、生物相容性、生物降解和清除等特性,总结GO作为涂层、控释材料和复合支架在骨组织工程中的最新应用,并对其未来研究方向进行展望。  相似文献   

6.
骨组织工程中的复合支架研究是当今的热点之一,珍珠层粉作为一种骨修复替代材料,具有诱导成骨作用的有机基质以及合适的降解性能。因此珍珠层粉复合支架有望成为理想的骨组织工程修复材料,现就其生物学性能进行综述。  相似文献   

7.
目的:在骨组织工程中,如何制备出理想的支架材料一直是研究重点;目前主要的有天然生物支架材料、人工合成有机材料和无机材料等;生物衍生骨即天然生物支架材料的一种,由于其与天然骨在形态结构上较为相似,是近年来研究较多的支架材料之一;既往形态学研究局限于在二维层面,对于其三维结构参数分析较少。故本实验主要运用Micro-CT对生物衍生松质骨的三维结构参数进行分析,量化评价其作为骨组织工程支架材料的结构参数。方法:截取新鲜猪松质骨,经脱脂脱蛋白部分脱钙及去抗原处理后,制作成生物衍生骨支架;应用Micro.CT扫描,重建三维图并量化分析其结构参数,统计软件SPSS分析各参数间的相关性。结果:经Micro.CT扫描,得到二维CT图和三维重建图。各三维结构参数的值分别为:BV/TV(20.48±5.14)%;BS/BV(41.66±5.39)1/ram;Porosity(79.52±5.14)%;Tb.Th(0.10±0.01)mm;Tb.N(1.99±0.47)l/mm;Tb.Sp(0.32±0.05)mm;Tb.Pf(2.03±4.70)1/mm;SMI(1.28±0.35);DA(1.60±0.23);Corm.Dn(158.53±106.09)I/mm3。各参数间相关系数具有统计学意义的为:(1)Porosity与BS/BV、Tb.Th;(2)BV/TV与BS/BV、Tb.Th;(3)BS/BV与Coma.Dn、Porosity、BV/TV、;(4)Tb.Th与Porosity、BV厂IV、Conn.Dn;(5)DA与Corm.Dn;(6)Conn.Dn与Bs/BV、Tb.Th、DA。结论:Micro-CT扫描、量化分析是评价支架材料结构参数的理想方法;也证明生物衍生骨支架符合骨组织工程对支架材料的三维结构要求,尤其在孔径大小、孔隙率、表面积体积比等三维结构参数,此外,也可为其他支架材料的制备在三维结构上的要求提供参考依据。  相似文献   

8.
卢宝勇  李敏 《生命科学》2008,20(1):153-157
丝纤维特别是丝素蛋白和蜘蛛丝蛋白作为具有良好生物相容性的高分了生物材料在组织工程和生物医学领域里有着广泛的应用。本文阐述了近年来在组织工程研究中所涉及的利用丝纤维进行支架材料制备、细胞培养和体内植入检测手段等方面的研究概况。  相似文献   

9.
形状记忆聚合物是由固定相和可逆相构成的具有在外界刺激条件下诱导形状改变特性的一类高分子智能材料。相较于传统的形状记忆合金与陶瓷,其具有特定的生物可降解性、更高的机械性能调控空间、更强的形变恢复能力及更优良的生物相容性。凭借材料特性,近阶段针对形状记忆聚合物在组织工程领域的应用研究愈发广泛,包括血管组织、骨骼肌组织、神经组织与骨组织等方面。综述近年来形状记忆聚合物在多种组织工程领域研究中的实验创新、技术突破与应用拓展,例如将其作为新型多孔血管支架、骨骼肌修复支架、神经修复导管与骨缺损填充物等。可预见随着技术和材料的不断发展,形状记忆聚合物在组织工程领域的应用将更加成熟。  相似文献   

10.
骨组织工程通过联合利用种子细胞、生物活性因子和支架材料等要素来构建骨组织再生微环境,从而促进骨缺损的修复重建来诱导骨再生。明胶微球具有多孔性、生物降解性、生物相容性及生物安全性等优势,是一种极具应用潜能的骨修复材料。明胶微球用于体外培养种子细胞时可实现高效扩增。多官能团结构使其可作为促血管再生因子、促骨再生因子及抗感染因子等多种药物的递送载体,缓释药物的同时也可实现微球的多功能化。在构建明胶微球支架时与其他生物材料复合及血管化性能的赋予可提高支架材料的综合性能,但目前支架的设计还存在如何兼顾材料多孔结构和力学性能的问题。本文主要综述了明胶微球的常见制备技术及其近年来在骨组织工程中的应用,并对未来的发展前景进行展望。  相似文献   

11.
在海藻酸钠凝胶上诱导骨髓间充质干细胞分化为成骨细胞   总被引:5,自引:0,他引:5  
通过在海藻酸钠凝胶上诱导bMSCs向成骨细胞分化,探讨其对骨髓间充质干细胞(bone mesenchymal stem cells, bMSCs)的生物学效应。采用MTT、甲苯胺蓝染色、von Kossa染色和RT-PCR分别检测细胞的增殖、生长形态、诱导后细胞的钙化结节和成骨相关基因的表达。实验组bMSCs生长状况良好、细胞增殖迅速,与对照组的增殖无差异;bMSCs成集落样生长明显,集落中央细胞重叠生长形成钙化结节;培养至12d,实验组和对照组的成骨相关基因,包括碱性磷酸酶、I型胶原和骨钙素,均为阳性表达,但实验组的表达量高于对照组。海藻酸钠凝胶能够促进bMSCs向成骨细胞的分化,是良好的骨组织工程支架材料。  相似文献   

12.
Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.  相似文献   

13.
Bone tissue engineering requires an osteoconductive scaffold, multipotent cells with regenerative capacity and bioactive molecules. In this study we investigated the osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) on titanium dioxide (TiO2) scaffold coated with alginate hydrogel containing various concentrations of simvastatin (SIM). The mRNA expression of osteoblast-related genes such as collagen type I alpha 1 (COL1A1), alkaline phosphatase (ALPL), osteopontin (SPP1), osteocalcin (BGLAP) and vascular endothelial growth factor A (VEGFA) was enhanced in hAD-MSCs cultured on scaffolds with SIM in comparison to scaffolds without SIM. Furthermore, the secretion of osteoprotegerin (OPG), vascular endothelial growth factor A (VEGFA), osteopontin (OPN) and osteocalcin (OC) to the cell culture medium was higher from hAD-MSCs cultured on scaffolds with SIM compared to scaffolds without SIM. The TiO2 scaffold coated with alginate hydrogel containing SIM promote osteogenic differentiation of hAD-MSCs in vitro, and demonstrate feasibility as scaffold for hAD-MSC based bone tissue engineering.  相似文献   

14.
The scaffolds for stem cell‐based bone tissue engineering should hold the ability to guide stem cells osteo‐differentiating. Otherwise, stem cells will differentiate into unwanted cell types or will form tumors in vivo. Alginate, a natural polysaccharide with great biocompatibility, was widely used in biomedical applications. However, the limited bioactivity and poor osteogenesis capability of pristine alginate hampered its further application in tissue engineering. In this work, a bone forming peptide‐1 (BFP‐1), derived from bone morphogenetic protein‐7, was grafted to alginate polymer chains to prepare peptide‐decorated alginate porous scaffolds (pep‐APS) for promoting osteo‐differentiation of human mesenchymal stem cells (hMSCs). SEM images of pep‐APS exhibited porous structure with about 90% porosity (pore size 100–300 μm), which was appropriate for hMSCs ingrowth. The adhesion, proliferation and aggregation of hMSCs grown on pep‐APS were enhanced in vitro. Moreover, pep‐APS promoted the alkaline phosphatase (ALP) activity of hMSCs, and the osteo‐related genes expression was obviously up‐regulated. The immunochemical staining and western blot analysis results showed high expression level of OCN and Col1a1 in the hMSCs grown on pep‐APS. This work provided a facile and valid strategy to endow the alginate polymers themselves with specific bioactivity and prepare osteopromoting scaffold with enhanced osteogenesis ability, possessing potential applications in stem cell therapy and regenerative medicine.  相似文献   

15.
Scaffold-based bone engineering by using genetically modified cells   总被引:1,自引:0,他引:1  
Hutmacher DW  Garcia AJ 《Gene》2005,347(1):1-10
The first generation of clinically applied tissue engineering concepts in the area of skin, cartilage and bone marrow regeneration was based on the isolation, expansion and implantation of cells from the patient's own tissue. Although successful in selective treatments, tissue engineering needs to overcome major challenges to allow widespread clinical application with predictable outcomes. One challenge is to present the cells in a matrix to the implantation site to allow the cells to survive the wound healing contraction forces, tissue remodeling in certain tissues such as bone and biomechanical loading. Hence, several tissue engineering strategies focus on the development of load-bearing scaffold/cell constructs. From a cell source point of view, bone engineers face challenges to isolate and expand cells with the highest potential to form osseous tissue along with harvesting tissue without extensive donor site morbidity. A major hurdle to tissue engineering is de-differentiation and limited ability to control cell phenotype following in vitro expansion. Due to early successes with genetic engineering, bone tissue engineers have used different strategies to genetically alter various types of mesenchymal cells to enhance the mineralization capacity of tissue-engineered scaffold/cell constructs. Although the development of multi-component scaffold/osteogenic cell constructs requires a combination of interdisciplinary research strategies, the following review is limited to describe the general aspects of bone engineering and to present overall directions of technology platforms, which include a genetic engineering component. This paper reviews the most recent work in the field and discusses the concepts developed and executed by a collaborative effort of the multi-disciplinary teams of the two authors.  相似文献   

16.
Achieving successful vascularization remains one of the main problems in bone tissue engineering. After scaffold implantation, the growth of capillaries into the porous construct may be too slow to provide adequate nutrients to the cells in the scaffold interior and this inhibits tissue formation in the scaffold core. Often, prior to implantation, a controlled cell culture environment is used to stimulate cell proliferation and, once in place, the mechanical environment acting on the tissue construct is determined by the loading conditions at the implantation site. To what extent do cell seeding conditions and the construct loading environment have an effect on scaffold vascularization and tissue growth? In this study, a mechano-biological model for tissue differentiation and blood vessel growth was used to determine the influence of cell seeding on vascular network development and tissue growth inside a regular-structured bone scaffold under different loading conditions. It is predicted that increasing the number of cells seeded homogeneously reduces the rate of vascularization and the maximum penetration of the vascular network, which in turn reduces bone tissue formation. The seeding of cells in the periphery of the scaffold was predicted to be beneficial for vascularization and therefore for bone growth; however, tissue formation occurred more slowly during the first weeks after implantation compared to homogeneous seeding. Low levels of mechanical loading stimulated bone formation while high levels of loading inhibited bone formation and capillary growth. This study demonstrates the feasibility of computational design approaches for bone tissue engineering.  相似文献   

17.
Cardiac tissue engineering has evolved as a potential therapeutic approach to assist in cardiac regeneration. We have recently shown that tissue-engineered cardiac graft, constructed from cardiomyocytes seeded within an alginate scaffold, is capable of preventing the deterioration in cardiac function after myocardial infarction in rats. The present article addresses cell seeding within porous alginate scaffolds in an attempt to achieve 3D high-density cardiac constructs with a uniform cell distribution. Due to the hydrophilic nature of the alginate scaffold, its >90% porosity and interconnected pore structure, cell seeding onto the scaffold was efficient and short, up to 30 min. Application of a moderate centrifugal force during cell seeding resulted in a uniform cell distribution throughout the alginate scaffolds, consequently enabling the loading of a large number of cells onto the 3D scaffolds. The percent cell yield in the alginate scaffolds ranged between 60-90%, depending on cell density at seeding; it was 90% at seeding densities of up to 1 x 10(8) cells/cm(3) scaffold and decreased to 60% at higher densities. The highly dense cardiac constructs maintained high metabolic activity in culture. Scanning electron microscopy revealed that the cells aggregated within the scaffold pores. Some of the aggregates were contracting spontaneously within the matrix pores. Throughout the culture there was no indication of cardiomyocyte proliferation within the scaffolds, nor was it found in 3D cultures of cardiofibroblasts. This may enable the development of cardiac cocultures, without domination of cardiofibroblasts with time.  相似文献   

18.
Osteochondral tissue engineering aims to regenerate functional tissue-mimicking physiological properties of injured cartilage and its subchondral bone. Given the distinct structural and biochemical difference between bone and cartilage, bilayered scaffolds, and bioreactors are commonly employed. We present an osteochondral culture system which cocultured ATDC5 and MC3T3-E1 cells on an additive manufactured bilayered scaffold in a dual-chamber perfusion bioreactor. Also, finite element models (FEM) based on the microcomputed tomography image of the manufactured scaffold as well as on the computer-aided design (CAD) were constructed; the microenvironment inside the two FEM was studied and compared. In vitro results showed that the coculture system supported osteochondral tissue growth in terms of cell viability, proliferation, distribution, and attachment. In silico results showed that the CAD and the actual manufactured scaffold had significant differences in the flow velocity, differentiation media mixing in the bioreactor and fluid-induced shear stress experienced by the cells. This system was shown to have the desired microenvironment for osteochondral tissue engineering and it can potentially be used as an inexpensive tool for testing newly developed pharmaceutical products for osteochondral defects.  相似文献   

19.
目的:设计、制造一种新的灌注式生物反应器,专门用于高效地构建大体积、β-磷酸三钙组织工程骨。方法:在普通模式灌注生物反应器的灌流室内生成间断性低压环境(-0.01 mpa,0.5 Hz),用材料色素颗粒洗脱实验进行验证后,将复合兔骨髓间充质干细胞的大段、管状β-磷酸三钙材料分别在静态、反应器内常压灌注和间断低压灌注三种环境下培养4周。期间收集培养液检测葡萄糖日耗量、细胞活力(MTT比色法)、碱性磷酸酶比活性、骨桥蛋白水平,并进行硬组织切片检查。结果:色素颗粒洗脱实验证明,间断性低压可以改善低流量液流在材料内的分布;在培养2周和4周时,负压灌注组日均葡萄糖消耗量和细胞活力均显著高于常压灌注组:(t=20.254 P<0.05,t=64.794 P<0.05)及(t=17.586 P<0.05,t=7.583 P<0.05);碱性磷酸酶(ALP)比活性测定和骨桥蛋白水平(OPN)反映间断低压灌注组中骨髓间充质细胞向成骨细胞分化效率更高,但高峰相晚于常压灌注组和静态培养组;在间断低压灌注组中材料深部的占孔率最高,并且分布更均匀。结论:此新型灌注式生物反应器适用于构建大体积、特殊构型组织工程骨;其高效的促进细胞增殖效应可减少初始复合的种子细胞数量,缩短构建周期。  相似文献   

20.
This study aims to investigate the survival and osteogenic behavior of murine-derived adipose-tissue stromal cells (ATSCs) encapsulated in alginate microcapsules thereby instigating further studies in this cell delivery strategy for in vivo osteogenesis. Cell viability was quantified using a tetrazolium-based assay and osteogenic differentiation was evaluated by both alkaline-phosphatase (ALP) histochemistry and osteocalcin mRNA analysis. Following microencapsulation, cell numbers increased from 3.9 x 10(3) on day 1 to 7.8 x 10(3) on day 7 and maintained excellent viability in the course of 21-day culture. ALP was 6.9, 5.5, and 3.2 times higher than monolayer cultures on days 7, 14, and 21, respectively. In addition, osteocalcin mRNA was detectable in encapsulated cultures earlier (day 14) than monolayer cultures. We conclude that alginate microcapsules can act as three-dimensional matrix for ATSC proliferation and has potential for use as injectable, biodegradable scaffold in bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号