首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cDNA library of human pancreatic islets was screened with sera from patients with insulin-dependent diabetes mellitus (IDDM). From the library screening, we isolated a novel cDNA, RNA helicase-like protein (RHELP), which exhibited strong sequence homology to p68 RNA helicase, a prototypic member of the DEAD (Asp-Glu-Ala-Asp) box protein family. Sequence analysis of the cDNA revealed that RHELP contained DEAD sequence motif and other conserved motifs of the DEAD box protein family, indicating that RHELP is a new member of this family. DEAD box-containing proteins are involved in the RNA processing, ribosome assembly, spermatogenesis, embryogenesis, and cell growth and division. RHELP showed 42% and 44% amino acid sequence identity to human p68 RNA helicase and yeast DBP2 RNA helicase, respectively, among the DEAD box protein family. Northern blot analysis revealed that RHELP is expressed in most tissues including the liver, lung, tonsil, thymus, and muscle in addition to the pancreatic islets. In vivo or in vitro functions of RHELP as a putative RNA helicase and its potential role as a diabetic autoantigen need to be further investigated.  相似文献   

2.
人DDX36和小鼠Ddx36基因在成年睾丸组织中的表达研究   总被引:1,自引:1,他引:0  
果蝇是结构基因组学和功能基因组学研究的最为理想的一种模式生物,采用同源克隆的策略,应用生物信息学分析和实验技术相结合的方法分别从人和小鼠中克隆了同源于果蝇MLE蛋白的新基因DDX36和Ddx36。为进一步研究DDX36和Ddx36基因与精子发生的关系,再应用Northrn blotting,RT-PCR和组织原位杂交技术探讨了DDX36和Ddx36基因的表达情况,结果发现人DDX36和小鼠Ddx36基因在成年睾丸组织中高表达。初步证明DDX36和Ddx36基因在精子发生中亦可能发挥重要作用。  相似文献   

3.
During the splicing process, spliceosomal snRNAs undergo numerous conformational rearrangements that appear to be catalyzed by proteins belonging to the DEAD/H-box superfamily of RNA helicases. We have cloned a new RNA helicase gene, designated DBP2 (DEAH-boxprotein), homologous to the Schizosaccaromyces pombe cdc28(+)/prp8(+) gene involved in pre-mRNA splicing and cell cycle progression. The full-length DBP2 contains 3400 nucleotides and codes for a protein of 1041 amino acids with a calculated mol. wt of 119 037 Da. Transfection experiments demonstrated that the GFP-DBP2 gene product, transiently expressed in HeLa cells, was localized in the nucleus. The DBP2 gene was mapped by FISH to the MHC region on human chromosome 6p21.3, a region where many malignant, genetic and autoimmune disease genes are linked. Because the expression of DBP2 gene in S.pombe prp8 mutant cells partially rescued the temperature-sensitive phenotype, we conclude that DBP2 is a functional human homolog of the fission yeast Cdc28/Prp8 protein.  相似文献   

4.
5.
The human p68 protein is an RNA-dependent ATPase and RNA helicase which was first identified because of its immunological cross-reaction with a viral RNA helicase, simian virus 40 large T antigen. It belongs to a recently discovered family of proteins (DEAD box proteins) that share extensive regions of amino acid sequence homology, are ubiquitous in living organisms, and are involved in many aspects of RNA metabolism, including splicing, translation, and ribosome assembly. We have shown by immunofluorescent microscopy that mammalian p68, which is excluded from the nucleoli during interphase, translocates to prenucleolar bodies during telophase. We have cloned 55% identical genes from both Schizosaccharomyces pombe and Saccharomyces cerevisiae and shown that they are essential in both yeasts. The human and yeast genes contain a large intron whose position has been precisely conserved. In S. cerevisiae, the intron is unusual both because of its size and because of its location near the 3' end of the gene. We discuss possible functional roles for such an unusual intron in an RNA helicase gene.  相似文献   

6.
Identification of a putative RNA helicase in E.coli.   总被引:7,自引:2,他引:5       下载免费PDF全文
The human p68 protein, an SV40 large T related antigen, is an RNA dependent ATPase and RNA helicase. It belongs to a new large and highly conserved gene family, the DEAD box proteins, whose members are involved in a variety of processes requiring manipulation of RNA secondary structure such as translation and splicing. Multiple DEAD box genes are present in S.cerevisiae, but only one has previously been described in E.coli. Low stringency screening of an E.coli genomic library with a p68 cDNA probe led to the identification of dbpA, a new E.coli DEAD box gene located at 29.6 minutes on the W3110 chromosome. We report here the nucleotide and deduced amino acid sequences of the gene. We have overexpressed dbpA from its own promoter on a high copy number plasmid and identified the gene product as a approximately 50 kD protein by immunoblotting with an anti-DEAD antibody.  相似文献   

7.
8.
RNA helicases play important roles in cellular processes such as pre-mRNA splicing, rRNA processing, ribosomal biogenesis, and translation. A full-length DEAD box RNA helicase cDNA (CfrHlc113) was isolated from the spruce budworm, Choristoneura fumiferana. CfrHlc113 contained the eight functional motifs, which are highly conserved in the DEAD box RNA helicase family, and an arginine-serine-aspartate (RSD) domain at its N-terminal end. CfrHlc113 was highly homologous to Rattus norvegicus HEL117 and human prp5 genes, both of which are suggested to be involved in RNA splicing. The results of Northern and Western blotting showed that expression of the CfrHlc113 gene was low or undetectable in eggs, larvae, pupae, and adults. High levels of expression were, however, detected in the three in vitro cultured cell lines, CF-203, CF-124T, and CF-70, which were developed from the midgut, ovaries, and neonate larvae, respectively. Immunocytochemistry revealed that CfrHlc113 protein was present exclusively in the nuclei of these cell lines.  相似文献   

9.
eIF-4A is a eukaryotic translation initiation factor that is required for mRNA binding to ribosomes. It exhibits single-stranded RNA-dependent ATPase activity, and in combination with a second initiation factor, eIF-4B, it exhibits duplex RNA helicase activity. eIF-4A is the prototype of a large family of proteins termed the DEAD box protein family, whose members share nine highly conserved amino acid regions. The functions of several of these conserved regions in eIF-4A have previously been assigned to ATP binding, ATPase, and helicase activities. To define the RNA-binding region of eIF-4A, a UV-induced cross-linking assay was used to analyze binding of mutant eIF-4A proteins to RNA. Mutants carrying mutations in the ATP-binding region (AXXXXGKT), ATPase region (DEAD), helicase region (SAT), and the most carboxy-terminal conserved region of the DEAD family, HRIGRXXR, were tested for RNA cross-linking. We show that mutations, either conservative or not, in any one of the three arginines in the HRIGRXXR sequence drastically reduced eIF-4A cross-linking to RNA. In addition, all the mutations in the HRIGRXXR region abrogate RNA helicase activity. Some but not all of these mutations affect ATP binding and ATPase activity. This is consistent with the hypothesis that the HRIGRXXR region is involved in the ATP hydrolysis reaction and would explain the coupling of ATPase and RNA-binding/helicase activities. Our results show that the HRIGRXXR region, which is QRXGRXXR or QXXGRXXR in the RNA and DNA helicases of the helicase superfamily II, is involved in ATP hydrolysis-dependent RNA interaction during unwinding. We also show that mutations in other regions of eIF-4A that abolish ATPase activity sharply decrease eIF-4A cross-linking to RNA. A model is proposed in which eIF-4A first binds ATP, resulting in a change in eIF-4A conformation which allows RNA binding that is dependent on the HRIGRXXR region. Binding of RNA induces ATP hydrolysis, leading to a more stable interaction with RNA. This process is then linked to unwinding of duplex RNA in the presence of eIF-4B.  相似文献   

10.
A Pause  N Sonenberg 《The EMBO journal》1992,11(7):2643-2654
eIF-4A is a translation initiation factor that exhibits bidirectional RNA unwinding activity in vitro in the presence of another translation initiation factor, eIF-4B and ATP. This activity is thought to be responsible for the melting of secondary structure in the 5' untranslated region of eukaryotic mRNAs to facilitate ribosome binding. eIF-4A is a member of a fast growing family of proteins termed the DEAD family. These proteins are believed to be RNA helicases, based on the demonstrated in vitro RNA helicase activity of two members (eIF-4A and p68) and their homology in eight amino acid regions. Several related biochemical activities were attributed to eIF-4A: (i) ATP binding, (ii) RNA-dependent ATPase and (iii) RNA helicase. To determine the contribution of the highly conserved regions to these activities, we performed site-directed mutagenesis. First we show that recombinant eIF-4A, together with recombinant eIF-4B, exhibit RNA helicase activity in vitro. Mutations in the ATPase A motif (AXXXXGKT) affect ATP binding, whereas mutations in the predicted ATPase B motif (DEAD) affect ATP hydrolysis. We report here that the DEAD region couples the ATPase with the RNA helicase activity. Furthermore, two other regions, whose functions were unknown, have also been characterized. We report that the first residue in the HRIGRXXR region is involved in ATP hydrolysis and that the SAT region is essential for RNA unwinding. Our results suggest that the highly conserved regions in the DEAD box family are critical for RNA helicase activity.  相似文献   

11.
DEAD box RNA解旋酶参与RNA多方面的代谢,在植物生长发育和逆境反应中起重要作用。本研究从蕨类植物问荆(Equisetum arvense)中克隆到一条DEAD box RNA解旋酶cDNA全长序列,命名为EaRH1,并在GenBank注册登记(KJ734026)。序列分析显示:该cDNA全长3230bp,包含一个从487bp到2799bp编码770个氨基酸的开放读码框,其对应的蛋白序列包含9个保守模块结构。EaRH1与其它物种DEAD box RNA 解旋酶蛋白序列比对结果显示:模块Ⅰa、Ⅱ和Ⅲ序列几乎完全相同,模块Q、Ⅰ和 Ⅳ序列存在一些差异。EaRH1与江南卷柏(Selaginella moellendorffii)基因组一条假定序列相似度高达69%,其中相似度最高的区域集中在包含9个保守模块的结构域。系统进化树分析显示:EaRH1与拟南芥(Arabidopsis thaliana)DEAD box RNA解旋酶At3g22320在氨基酸序列上有相对较高的同源性。序列结构比较和进化分析可推测出EaRH1可能参与植物体生长发育、miRNA生物合成、与RNA结合蛋白的相互作用和非生物胁迫应答。本文的研究为探索问荆DEAD box RNA解旋酶的进一步功能提供参考。  相似文献   

12.
DEAD box family helicases consist of a helicase core that is formed by two flexibly linked RecA-like domains. The helicase activity can be regulated by N- or C-terminal extensions flanking the core. Thermus thermophilus heat resistant RNA-dependent ATPase (Hera) is the first DEAD box helicase that forms a dimer using a unique dimerization domain. In addition to the dimerization domain, Hera contains a C-terminal RNA binding domain (RBD) that shares sequence homology only to uncharacterized proteins of the Deinococcus/Thermus group. The crystal structure of Hera_RBD reveals the fold of an altered RNA recognition motif (RRM) with limited structural homology to the RBD of the DEAD box helicase YxiN from Bacillus subtilis. Comparison with RRM/RNA complexes shows that a RNA binding mode different than that suggested for YxiN, but similar to U1A, can be inferred for Hera. The orientation of the RBD relative to the helicase core was defined in a second crystal structure of a Hera fragment including the C-terminal RecA domain, the dimerization domain, and the RBD. The structures allow construction of a model for the entire Hera helicase dimer. A likely binding surface for large RNA substrates that spans both RecA-like domains and the RBD is identified.  相似文献   

13.
While some members of the ubiquitous DExD/H box family of proteins have RNA helicase activity in vitro, their roles in vivo remain virtually unknown. Here, we show that the function of an otherwise essential DEAD box protein, Prp28p, can be bypassed by mutations that alter either the protein U1-C or the U1 small nuclear RNA. Further analysis suggests that the conserved L13 residue in the U1-C protein makes specific contact to stabilize the U1 snRNA/5' splice site duplex in the prespliceosome, and that Prp28p functions to counteract the stabilizing effect of the U1-C protein, thereby promoting the dissociation of the U1 small nuclear ribonucleoprotein particle from the 5' splice site. Thus, in addition to unwinding RNA, the DExD/H box proteins may affect RNA-RNA rearrangements by antagonizing specific RNA-stabilizing proteins.  相似文献   

14.
Nuclear protein p68 is an RNA-dependent ATPase.   总被引:19,自引:4,他引:15       下载免费PDF全文
R D Iggo  D P Lane 《The EMBO journal》1989,8(6):1827-1831
The human nuclear antigen p68 cross reacts with a monoclonal antibody to SV40 large-T antigen. Its deduced amino acid sequence contains short motifs which place it in a large superfamily of proteins of known or putative helicase activity. Recently, a p68 subfamily (DEAD box proteins) which share more extensive regions of homology has been identified in mouse, Drosophila, Saccharomyces cerevisiae and Escherichia coli. These proteins are involved in translation, ribosome assembly, mitochondrial splicing, spermatogenesis and embryogenesis. We show here that immunopurified human p68 has RNA dependent ATPase activity. In addition, we show that the protein undergoes dramatic changes in cellular location during the cell cycle.  相似文献   

15.
DEAD box RNA helicases use the energy of ATP hydrolysis to unwind double-stranded RNA regions or to disrupt RNA/protein complexes. A minimal RNA helicase comprises nine conserved motifs distributed over two RecA-like domains. The N-terminal domain contains all motifs involved in nucleotide binding, namely the Q-motif, the DEAD box, and the P-loop, as well as the SAT motif, which has been implicated in the coordination of ATP hydrolysis and RNA unwinding. We present here the crystal structure of the N-terminal domain of the Thermus thermophilus RNA helicase Hera in complex with adenosine monophosphate (AMP). Upon binding of AMP the P-loop adopts a partially collapsed or half-open conformation that is still connected to the DEAD box motif, and the DEAD box in turn is linked to the SAT motif via hydrogen bonds. This network of interactions communicates changes in the P-loop conformation to distant parts of the helicase. The affinity of AMP is comparable to that of ADP and ATP, substantiating that the binding energy from additional phosphate moieties is directly converted into conformational changes of the entire helicase. Importantly, the N-terminal Hera domain forms a dimer in the crystal similar to that seen in another thermophilic prokaryote. It is possible that this mode of dimerization represents the prototypic architecture in RNA helicases of thermophilic origin.  相似文献   

16.
Yeast (Saccharomyces cerevisiae) SWI/SNF is a prototype for a large family of ATP-dependent chromatin-remodeling enzymes that facilitate numerous DNA-mediated processes. Swi2/Snf2 is the catalytic subunit of SWI/SNF, and it is the founding member of a novel subfamily of the SF2 superfamily of DNA helicase/ATPases. Here we present a functional analysis of the diagnostic set of helicase/ATPase sequence motifs found within all Swi2p/Snf2p family members. Whereas many of these motifs play key roles in ATP binding and/or hydrolysis, we identify residues within conserved motif V that are specifically required to couple ATP hydrolysis to chromatin-remodeling activity. Interestingly, motif V of the human Swi2p/Snf2p homolog, Brg1p, has been shown to be a possible hot spot for mutational alterations associated with cancers.  相似文献   

17.
18.
We have recently identified the Xenopus laevis An3 protein as a bona fide substrate for the nuclear export receptor CRM1 (Exportin 1). An3 binds directly to CRM1 with high affinity via a leucine-rich nuclear export signal located in the extreme N terminus. An3 is a member of the DEAD box family of RNA helicases, which unwind RNA duplexes. RNA unwinding is coupled to hydrolysis of nucleoside triphosphates by the helicase, and the ATPase activity of several helicases is greatly stimulated by various polynucleotides. Here we report that dATP hydrolysis by An3 is stimulated approximately 6-fold by total RNA from X. laevis oocytes, whereas poly(U) RNA fails to enhance hydrolysis, suggesting the existence of a specific RNA activator for An3. Kinetic analysis reveals that a mutation within the conserved DEAD box motif reduces the rate of dATP hydrolysis by approximately 6-fold. In accordance with this, the DEAD box mutant is unable to unwind double-stranded RNA. Microinjection of the An3 DEAD box mutant into X. laevis oocytes nuclei reveals a significantly lower export rate as compared with wild-type An3 protein. This is not because the mutant has lower affinity toward CRM1, nor is it due to altered RNA binding capacity. This suggests that nuclear export of An3 protein by CRM1 is coupled to An3 helicase activity.  相似文献   

19.
p72: a human nuclear DEAD box protein highly related to p68.   总被引:8,自引:4,他引:4       下载免费PDF全文
P72, a novel human member of the DEAD box family of putative RNA-dependent ATPases and ATP-dependent RNA helicases was isolated from a HeLa cDNA library. The predicted amino acid sequence of p72 is highly homologous to that of the prototypic DEAD box protein p68. In addition to the conserved core domains characteristic of DEAD box proteins, p72 contains several N-terminal RGG RNA-binding domains and a serine/glycine rich C-terminus likely involved in mediating protein-protein interactions. A p72-specific probe detects two mRNAs of approximately 5300 and 9300 bases which, although ubiquitously expressed, show variability in their expression levels in different tissues. Purified recombinant p72 exhibits ATPase activity in the presence of a range of RNA moieties. Immunocytochemical studies of p68 and p72 show that these proteins localise to similar locations in the nucleus of HeLa cells, suggesting their involvement in a nuclear process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号