首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SV3T3 C120 cells contain a 145,000-dalton form of simian virus 40 (SV40) super-T antigen but little if any normal-sized large-T. The subcellular location of super-T, its DNA binding properties, and its interaction with nonviral tumor antigen (NVT) were examined. Immunofluorescence microscopy and subcellular fractionation indicated that super-T is almost exclusively nuclear. Chromatography on double-stranded DNA-cellulose showed that super-T binds to double-stranded DNA and has an elution profile indistinguishable from normal-sized large-T. Super-T also binds specifically to a fragment of SV40 DNA which contains the origin of DNA replication. However, immunoprecipitation of super-T or large-T either with anti-tumor cell serum or with anti-NVT serum from fractions obtained by sucrose density centrifugation of 32P-labeled or [35S]methionine-labeled extracts revealed clear differences in the sedimentation characteristics of these proteins. The bulk of labeled 145,000-dalton super-T sedimented between 4S and 10S, whereas the bulk of 32P-labeled large-T from normal SV40-transformed cells sedimented as two peaks at 23S to 25S and 16S to 18S. By contrast, the sedimentation properties of NVT from the SV3T3 C120 cells were similar to those normally observed with other SV3T3 cell lines. The reason for this apparent difference in complex formation between super-T and NVT and that normally observed with large-T is unclear, but it probably has no deleterious effect on the ability of super-T to maintain transformation.  相似文献   

2.
Origin binding by a 100,000-dalton super-T antigen from SVT2 cells.   总被引:2,自引:1,他引:1       下载免费PDF全文
The SVT2 line of simian virus 40-transformed mouse cells expresses little or no wild-type-size A protein (T antigen). Instead, a variant form is produced in these cells that is larger than normal-size A protein. This variant form has an Mr of 100,000 (100K super-T antigen) and is found primarily in complexes with the host-cell-coded p53 protein. Binding of the 100K super-T antigen to simian virus 40 origin region DNA was assayed by immunoprecipitation of super-T antigen-DNA complexes and then digestion with DNase I. DNA sequences associated with super-T antigen were protected from digestion and retained in the immune complex, while unprotected sequences were digested and released. The 100K super-T antigen efficiently protects DNA sequences in the previously defined regions I and II (P. Tegtmeyer, B. A. Lewton, A. L. DeLucia, V. G. Wilson, and K. Ryder, J. Virol. 46:151-161, 1983). Within region II (the origin of replication), the pattern and size of protected fragments are identical for super-T antigen and purified wild-type A protein. Thus, even though super-T antigen is larger than wild-type A protein, both must bind with the same alignment on origin DNA. Furthermore, complexes between the host-cell-coded p53 protein and the 100K super-T antigen also retain the ability to bind in regions I and II.  相似文献   

3.
M Kress  E May  R Cassingena    P May 《Journal of virology》1979,31(2):472-483
In addition to the virus-coded large-T and small-t antigens, two new classes of proteins were immunoprecipitated by anti-simian virus 40 (SV40) tumor serum from extracts of various SV40-transformed cell lines. These were as follows: (i) proteins (termed "super-T proteins") with an Mr higher than that of large-T antigen (86,000), which were found in many SV40-transformed cell lines derived from mouse and rat cells (super-T proteins and large-T antigen appeared to have closely related structures as judged by the Chromobead elution patterns of their methionine-labeled tryptic peptides); (ii) proteins (termed "55K proteins") with an Mr ranging from 50,000 to 60,000, which were present in all SV40-transformed cell lines examined so far, including those obtained by chromosome-mediated gene transfer. The 55K proteins were not structurally related to large-T antigens, as judged by the Chromobead elution patterns of their methionine-labeled tryptic peptides. Our data are compatible with the assumption that the 55K proteins are largely or totally cell coded.  相似文献   

4.
Antibodies were raised against six synthetic peptides corresponding to overlapping amino acid sequences (106 through 145) from a putative DNA binding domain in simian virus 40 (SV40) large-T antigens. All six antipeptide sera immunoprecipitated large-T from crude extracts of SV40-transformed cells, but the efficiency varied widely; in general, antibodies to the longer peptides produced the strongest anti-large-T activity. Antisera were purified by immunoaffinity chromatography on immobilized peptide. The purified antisera recognized only some forms of large-T; full-sized large-T from transformed cells, super-T from SV3T3 C120 cells, and 70,000-dalton T-antigen from Taq-BamHI cells were immunoprecipitated, whereas large-T from productively infected cells reacted irreproducibly, and the full-sized protein, synthesized in vitro or eluted from sodium dodecyl sulfate-containing gels, and the 33,000- and 22,000-dalton truncated large-Ts from Swiss SV3T3 and MES2006 cells, respectively, were not immunoprecipitated. This pattern of reactivity was explained when extracts were fractionated by sucrose density centrifugation, and it was found that only rapidly sedimenting forms of large-T were immunoprecipitated by the antipeptide sera; that is, large-T complexed with nonviral T antigen was detected, whereas lighter forms were not detected. Cascade immunoprecipitations did not support the view that this result was caused by the low affinity of the peptide antisera for large-T, and Western blotting experiments confirmed that the peptide antisera react directly with immobilized, monomeric large-T but not with nonviral T antigen. Immunoprecipitation assays to detect large-T:nonviral T antigen complexes bound specifically to fragments of SV40 DNA showed that under conditions of apparent antibody excess, DNA still bound to the complex.  相似文献   

5.
Serum raised against a mouse 53,000-dalton (53K) phosphoprotein precipitates both the 53K immunogen and simian virus 40 large-T from lysates of simian virus 40-transformed 3T3 cells. This serum, designated F5, does not recognize antigenic determinants on native or denatured large-T and precipitates large-T because the 53K phosphoprotein forms a stable complex with large-T. This complex sediments at 23S on sucrose density gradients, corresponding to a molecular weight of 600K to 1,000K, and appears to contain only 53K and large-T as major components. It is held together by noncovalent bonds and is located in the cell nucleus. All the 53K immunoprecipitated from cell lysates by F5 is present in the high-molecular-weight complex, but large-T can be separated into a complexed and a free form on sucrose density gradients. The complexed form of large-T is more readily phosphorylated than the free form. We have been unable to detect an association of large-T with comparable host cell proteins during productive infections with simian virus 40.  相似文献   

6.
Mouse cells transformed by simian virus 40 (SV40) have been shown to contain a complex of the virus-coded large-T antigen with a host 53,000-molecular-weight (53K) protein. Initial attempts to detect a similar complex in lytically infected cells were unsuccessful, and it therefore seemed that the complex might be peculiar to transformed or abortively transformed nonpermissive cells. Immunoprecipitation of [32P]phosphate-labeled extracts of SV40-infected CV-1 African green monkey kidney cells with antibodies specific for large-T or the 53K protein revealed that the large-T-53K protein complex was formed during lytic infections. Only a minor fraction of the large-T present was associated with 53K protein, and large-T and the 53K host protein cosedimented during centrifugation through sucrose gradients. We used monospecific sera and monoclonal antibodies to study the rate of synthesis and phosphorylation of the 53K protein during lytic infections. Infection of CV-1 cells with SV40 increased the rate of synthesis of the 53K protein fivefold over that in mock-infected cells. At the same time, the rate of phosphorylation of the 53K protein increased more than 30-fold compared with control cultures. Monkey cells transformed by UV-irradiated SV40 (Gluzman et al., J. Virol. 22:256-266, 1977) also contained the large-T-53K protein complex. The formation of the complex is therefore not a peculiarity of SV40-transformed rodent cells but is a common feature of SV40 infections.  相似文献   

7.
We have previously cloned the gene encoding a 115,000-Mr super T antigen (115K super T antigen), an elongated form of the Simian virus 40 large T antigen, originating from the rat cell line V 11 F1 clone 1, subclone 7 (May et al., J. Virol. 45:901-913, 1983). DNA sequence analysis has shown that the 115K super T antigen gene contains notably an in-phase duplication of a sequence located in the region of tsA mutations. We have also shown that the 115K super T antigen gene is able to induce the formation of transformed foci in transfected rat cells. After rat cell cultures were transfected with the cloned gene encoding 115K super T antigen, we obtained a large number of transformants as reported in this paper. In these transformants, we detected a very high frequency of new T antigen variants, as shown by immunoprecipitation of the cell extracts with anti-simian virus 40 tumor serum followed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. Based on these results and all of the data presently available, it appears likely that the input plasmid or cosmid DNAs containing the cloned gene were first subjected to recombination events that yield new variant T antigen genes before these recombinant genes become integrated. The new variant T antigens observed in the transformants were predominantly those comigrating with normal-size large T antigen. In fact, these latter variants appeared to be indistinguishable from wild-type large T antigen as judged by restriction mapping by Southern blotting of the total genomic DNA of the transformants. Models of intermolecular or intramolecular homologous recombination occurring between or within the input plasmid or input cosmid DNA molecules are proposed to account for the formation of such revertants.  相似文献   

8.
Cell-free synthesis of simian virus 40 T-antigens.   总被引:27,自引:18,他引:9       下载免费PDF全文
  相似文献   

9.
Cells use the interferon-induced, double-stranded-RNA-dependent protein kinase PKR as a defense against virus infections. Upon activation, PKR phosphorylates and thereby inactivates the protein synthesis initiation factor eIF-2, resulting in the cessation of protein synthesis. Viruses have evolved various strategies to counteract this cellular defense. In this paper, we show that simian virus 40 (SV40) large-T antigen can antagonize the translational inhibitory effect resulting from the activation of PKR in virus-infected cells. Unlike the situation with other virus-host cell interactions, SV40 large-T antigen does not block the activation of PKR, suggesting that SV40 counteracts the cellular antiviral response mediated by PKR at a step downstream of PKR activation. Mutational analysis of large-T antigen indicates that a domain located between amino acids 400 and 600 of large-T antigen is responsible for this function. These results define a novel translational regulatory function for the SV40 large-T antigen.  相似文献   

10.
A E Smith  R Smith    E Paucha 《Journal of virology》1978,28(1):140-153
A study of simian virus 40 (SV40) T-antigens isolated from productively infected CV1 cells using a variety of different extraction procedures showed that under some conditions the highest molecular weight form of T-Ag (large-T) isolated comigrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with large-T from SV40-transformed H65-90B cells. Other faster-migrating forms of large-T are probably generated during the extraction procedure by a protease which is active at low pH, and such forms are probably experimental artifacts. After extraction under conditions which minimize proteolytic degradation of large-T, a further form of T-antigen was isolated; this has an apparent molecular weight in the range 15,000 to 20,000 and is referred to as small-t. Fingerprint analysis of [35S]methionine-labeled SV40 proteins showed that small-t has 10 to 12 methionine peptides whereas large-T has 15 to 18 methionine peptides. All but two of the methionine tryptic peptides present in small-t are also present in large-T. The fingerprint data also showed that T-antigens have no peptides in common with SV40 VP1. Experiments using reagents which inhibit posttranslational cleavage of encephalomyocarditis virus polyproteins showed that these reagents do not affect the synthesis of small-t and suggest that it is not made by proteolytic cleavage of large-T in vivo. An alternative model, which proposes that large-T and small-t are synthesized independently, is discussed in terms of the fingerprint data and the number of methionine tryptic peptides predicted from the primary sequence of SV40 DNA.  相似文献   

11.
12.
13.
The nucleotide sequence of the second part of the simian virus 40 DNA HindII + III restriction fragment A is presented. The sequence extends from map position 0.533 to 0.424 and together with the first part of Hind-A [Volckaert et al. Proc. Natl Acad. Sci. U.S.A. 75, 2160--2164 (1978)] completes the total hind-A sequence, comprising 1169 base pairs. The second half of Hind-A includes the region corresponding to the second splicing boundary common to small tumor antigen (small-t) and large tumor antigen (large-T) mRNA and it contains coding information for an internal portion of large-T antigen. Two similar secondary structures of reasonable thermodynamic stability can be proposed for the nucleotide sequence of the pre-mRNA corresponding to the region reported here. Their possible relevance to the splicing of the SV40 early mRNAs is discussed. The deduced amino acid sequence is 188 residues long and contains a Lys-Lys-Lys-Arg-Lys-stretch which may be involved in the DNA binding capacity of large-T. A presumptive phosphorylation site is also present.  相似文献   

14.
Focus formation in human diploid fibroblasts (HDF cells) is known to require both the simian virus 40 (SV40) large-T and small-t antigens. Similarly, both SV40 proteins were required to stimulate confluent, density-arrested HDF cells to reenter the cell cycle. This study used defective recombinant adenoviruses to examine the roles of the individual SV40 proteins in altering specific steps in the cell cycle. Small-t antigen and, to a lesser extent, large-T antigen increased the level of the S phase cyclin cyclin A but without increasing the activity of associated cyclin kinases unless the two SV40 proteins were coexpressed. The absence of kinase activity reflected the presence in density-arrested cells of high levels of the cyclin-dependent kinase inhibitors p21(WAF1) and p27(KIP1). We report here that expression of SV40 large-T antigen reduced levels of p21(WAF1), while expression of small-t antigen was required to decrease p27(KIP1). The separate effects of large-T and small-t antigens on these two inhibitors may explain the joint requirement for the two proteins to drive cell cycle reentry of HDF cells and ultimately transform these cells.  相似文献   

15.
Simian virus 40 small-t and large-T antigen were synthesized in vitro and labeled with methionine donated by initiator tRNA. Tryptic peptide fingerprinting was used to identify the amino-terminal peptide of the two proteins. Similar fingerprint analysis of small-t and large-T made in vitro in the absence of acetyl coenzyme A showed that the mobility of the amino-terminal peptide was changed under these conditions and suggested that it is acetylated. These data establish that the amino-terminal methionine residue of simian virus 40 small-t and large-T results from an initiation event, not post-translational cleavage, and provides additional evidence that the amino terminus of both proteins is acetylated. The identification of the amino-terminal peptide provides a useful marker for further studies on different forms of T-antigen from cells infected with and transformed by simian virus 40 and related viruses.  相似文献   

16.
17.
Simian virus 40 (SV40) transformed V 11 F 1 clone 1 subclone 7 rat cells (subclone 7) do not synthesize normal-size large T antigen (M(r), 90,000); instead, they produce a 115,000 M(r) super T antigen (115K super T antigen). This super T antigen is SV40 virus coded, and its synthesis results from rearrangement and amplification of integrated viral DNA sequences in subclone 7 (May et al., Nucleic Acids Res. 9:4111-4128, 1981). In this study the functional activities of 115K super T antigen were compared with the functional activities of SV40 large T antigen. Transfection experiments were performed with (i) cosmid SVE 5 Kb and plasmid pSVsT, both containing the super T antigen gene and (ii) plasmids pSV1 and pSV40, both containing the large T antigen gene. Transfection of pSVsT DNA or SVE 5 Kb DNA into secondary cultures of rat kidney cells induced the formation of transformed cell foci with an efficiency that was about 50% of the efficiency of pSV1 DNA or pSV40 DNA. Concomitant with the transforming activity, two other activities were also retained by super T antigen, namely, the ability to enhance the level of host cellular protein p53 and the capacity to bind to p53. In contrast, pSVsT and SVE 5 Kb DNAs were markedly deficient in the capacity to support tsA58 DNA replication in CV1-P cells at a nonpermissive temperature (41 degrees C), as shown by cotransfection experiments. The yield of virus produced in these experiments was 400-fold less than the yield obtained in parallel experiments with pSV40 or pSV1. However, SVE 5 Kb and pSVsT have a functional SV40 replication origin, as shown by their efficient replication in COS 1 cells which provided functional large T antigen. Super T antigen also possesses a specific affinity for sequences of SV40 viral origin. Our results suggest that under certain conditions, evolutionary changes in T antigen take place and that these changes could be restricted to the phenotypic requirement of maintaining a structure that is able to induce cell transformation, to form a complex with p53, and to enhance the cellular level of p53. Therefore, there appears to be a close relationship among the activities of T antigen involved in transforming cells, in binding to p53, and in enhancing the p53 cellular level. Moreover, this set of activities appears to be separable from the replicative ability of T antigen, based on the observation that 115K super T antigen is markedly defective for initiating viral DNA synthesis.  相似文献   

18.
At least three regions of the simian virus 40 small-t antigen (small-t) contribute to the protein's ability to enhance cellular transformation. As we showed previously for rat F111 cells, one region includes sequences from residues 97 to 103 that are involved in the binding and inhibition of protein phosphatase 2A. In the present study, the role of the protein phosphatase 2A binding region was confirmed in two additional small-t-dependent transformation systems. Second, small-t was found to provide a function previously identified as a large-T transformation domain. Mutations in residues 19 to 28 of large-T affected its transforming ability, but these mutations were complemented by a wild-type small-t. A third region of small-t was also required for efficient transformation. This region, the 42-47 region, is shared by large-T and small-t and contains a conserved HPDKGG hexapeptide. The 42-47 region function could be provided by either small-t or large-T in small-t-dependent systems. Mutations in the 42-47 region reduced the ability of small-t to transactivate the cyclin A promoter, of interest because small-t increased endogenous cyclin A mRNA levels in both human and monkey cells, as well as transactivating the promoter in transient assays.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号