首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two general mechanisms mediate glucose transport, one is a sodium-coupled glucose transporter found in the apical border of intestinal and kidney epithelia, while the other is a sodium-independent transport system. Of the latter, several facilitated transporters have been identified, including GLUT1 (erythrocyte/brain), GLUT2 (liver) and GLUT4 (adipose/muscle) isoforms. In this study, we used Western-blot analysis and high resolution immunoelectron microscopy (IEM) to investigate the stage-related expression and cellular localization of GLUT1, 2 and 4. The Western blot results demonstrate that GLUT1 is detectable in the oocyte and throughout preimplantation development. GLUT2 isoforms were not detectable until the blastocyst stage, while the GLUT4 isoform was undetectable in the oocyte through blastocyst stages. The present findings confirm previous studies at the molecular level which demonstrated that mRNAs encoding the same GLUT isoforms are detectable at corresponding developmental stages. GLUT1 and GLUT2 display different cellular distributions at the blastocyst stage as shown by IEM studies. GLUT1 has a widespread distribution in both trophectoderm and inner cell mass cells, while GLUT2 is located on trophectoderm membranes facing the blastocyst cavity. This observation suggests a different functional significance for these isoforms during mouse preimplantation development.  相似文献   

2.
3.
4.
Glucose transporter isoform-3 (GLUT3) is the trophoblastic facilitative glucose transporter. To investigate the role of this isoform in embryonic development, we created a novel GLUT3-null mouse and observed arrested early embryonic development and loss at neurulation stage when both alleles were mutated. This loss occurred despite the presence of other related isoforms, particularly GLUT1. In contrast, when a single allele was mutated, despite increased embryonic cell apoptosis, adaptive changes in the subcellular localization of GLUT3 and GLUT1 in the preimplantation embryo led to postimplantation survival. This survival was compromised by decreased GLUT3-mediated transplacental glucose transport, causing late-gestation fetal growth restriction. This yielded young male and female adults demonstrating catch-up growth, with normal basal glucose, insulin, insulin-like growth factor-I and IGF-binding protein-3 concentrations, fat and lean mass, and glucose and insulin tolerance. We conclude that GLUT3 mutations cause a gene dose-dependent early pregnancy loss or late-gestation fetal growth restriction despite the presence of embryonic and placental GLUT1 and a compensatory increase in system A amino acid placental transport. This critical life-sustaining functional role for GLUT3 in embryonic development provides the basis for investigating the existence of human GLUT3 mutations with similar consequences during early pregnancy.  相似文献   

5.
Cloning by somatic cell nuclear transfer requires silencing of the donor cell gene expression program and the initiation of the embryonic gene expression program (nuclear reprogramming). Failure to silence the donor cell program could lead to altered embryonic phenotypes. Cloned mouse embryos produced using myoblast nuclei fail to thrive in standard embryo culture media but flourish in somatic cell culture media favored by the donor myoblasts themselves, forming blastocysts at a significant rate, with robust morphologies, high total cell number, and a normal allocation of cells to the inner cell mass in most embryos. Myoblast cloned embryos continue expressing the GLUT4 glucose transporter, which is typically expressed in muscle but not in preimplantation stage embryos. Myoblast clones also exhibit precocious enrichment of GLUT1 at the cell surface. Both myoblast and cumulus cell cloned embryos exhibit enhanced rates of glucose uptake. These observations indicate that silencing of the donor cell genome during cloning either is incomplete or occurs progressively over the course of preimplantation development. As a result, cloned embryos initially exhibit many somatic cell-like characteristics. Tetraploid constructs, which possess a transplanted somatic cell genome plus the oocyte-derived chromosomes, exhibit a more embryonic-like pattern of gene expression and culture preference. We conclude that preimplantation stage cloned embryos have profoundly altered characteristics that are donor cell type specific and that exposure of cloned embryos to standard embryo culture conditions may lead to disruptions in basic homeostasis and inhibition of a range of essential processes including further nuclear reprogramming, contributing to cloned embryo demise.  相似文献   

6.
7.
8.
9.
10.
In mouse blastocysts six facilitative glucose transporter isoforms (GLUT)1-4, 8 and 9 are expressed. We have used the mouse embryonic stem (ES) cell line D3 and spontaneously differentiating embryoid bodies (EB) to investigate GLUT expression and the influence of glucose during differentiation of early embryonic cells. Both ES cells and EBs (2d-20d) expressed GLUT1, 3, and 8, whereas the isoforms 2 and 4 were detectable exclusively in EBs. Differentiation-associated expression of GLUT was analyzed by double staining with stage-specific embryonic antigen (SSEA-1), cytokeratins (CK18, 19), nestin, and desmin. Similar to trophoblast cells in mouse blastocysts the outer cell layer of endoderm-like cells showed a high GLUT3 expression in early EBs. In 20-day-old EBs no GLUT3 protein and only minor GLUT3 mRNA amounts could be detected. A minimal glucose concentration of 5 mM applied during 2 and 8 days of EB culture resulted in up-regulated GLUT4, Oct-4 and SSEA-1 levels and a delay in EB differentiation. We conclude that GLUT expression depends on cellular differentiation and that the expression is modulated by glucose concentration. The developmental and glucose-dependent regulation of GLUT strongly suggests a functional role of glucose and glucose transporters in ES cell differentiation and embryonic development.  相似文献   

11.
12.
Wei Y  Multi S  Yang CR  Ma J  Zhang QH  Wang ZB  Li M  Wei L  Ge ZJ  Zhang CH  Ouyang YC  Hou Y  Schatten H  Sun QY 《PloS one》2011,6(6):e21557
Errors in chromosome segregation or distribution may result in aneuploid embryo formation, which causes implantation failure, spontaneous abortion, genetic diseases, or embryo death. Embryonic aneuploidy occurs when chromosome aberrations are present in gametes or early embryos. To date, it is still unclear whether the spindle assembly checkpoint (SAC) is required for the regulation of mitotic cell cycle progression to ensure mitotic fidelity during preimplantation development. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of SAC components (Bub3, BubR1 and Mad2) in mouse preimplantation embryos. Our data showed that overexpressed SAC components inhibited metaphase-anaphase transition by preventing sister chromatid segregation. Deletion of SAC components by RNAi accelerated the metaphase-anaphase transition during the first cleavage and caused micronuclei formation, chromosome misalignment and aneuploidy, which caused decreased implantation and delayed development. Furthermore, in the presence of the spindle-depolymerizing drug nocodazole, SAC depleted embryos failed to arrest at metaphase. Our results suggest that SAC is essential for the regulation of mitotic cell cycle progression in cleavage stage mouse embryos.  相似文献   

13.
14.
Previous studies on human cell hybrids between HeLa and normal human fibroblasts have indicated that the tumorigenicy may be controlled by a putative tumor suppressor gene on chromosome 11. We previously demonstrated a twofold increase in glucose uptake with a reduced Km by tumorigenic HeLa cell hybrids which expressed a highly glycosylated GLUT1. In this study, we reported that a tumorigenic cell hybrid, CGL4, also expressed a glucose transporter isoform, GLUT3, that was undetectable in nontumorigenic CGL1 cells. The expression of GLUT3 together with GLUT1 of 70 kDa was also evident in three gamma-ray-induced tumorigenic clones isolated from CGL1 cells, while control nontumorigenic irradiated cells expressed 50 kDa GLUT1 alone. In accordance with this, GLUT3 mRNA was specifically expressed in tumorigenic cell hybrids. To examine the role of GLUT3, clones which stably overexpress GLUT3 were developed from both CGL1 and CGL4 cells. In these transfectants, the affinity for 2-deoxyglucose markedly increased, in parallel with the amount of expressed GLUT3 irrespective of its N-glycosylation state. These results suggest that the enhanced GLUT3 expression in HeLa cell hybrids associated with the tumorigenic phenotypes may account for the increased affinity for 2-deoxyglucose. Possible roles of the putative tumor suppressor in control of gene expression and glucose uptake is discussed.  相似文献   

15.
The Bex1/Rex3 gene was recently identified as an X-linked gene that is differentially expressed between parthenogenetic and normal fertilized, preimplantation stage mouse embryos. The Bex1/Rex3 gene appears to be expressed preferentially from the maternal X chromosome in blastocysts, but from either X chromosome in later stage embryonic tissues and adult tissues. To investigate whether differential expression of the Bex1/Rex3 gene between normal and parthenogenetic blastocyst stage embryos reflects genomic imprinting at the Bex1/Rex3 locus itself, or instead is the result of preferential inactivation of the paternal X chromosome or differences in timing of cellular differentiation, we examined in detail the expression pattern of the Bex1/Rex3 mRNA in normal preimplantation stage embryos, and compared its expression between androgenetic, gynogenetic, and normal fertilized embryos. Expression data reveal that the Bex1/Rex3 gene is initially transcribed at the 2-cell stage, transiently induced at the 8-cell stage, and then increases in expression again at the blastocyst stage. Very little expression is observed in isolated inner cell masses, indicating selective expression in the trophectoderm. Comparisons of Bex1/Rex3 mRNA expression between male and female androgenetic and control embryos and gynogenetic embros failed to reveal any significant difference in expression between the different classes of embryos at the 8-cell stage, or the expanding blastocyst stage (121 hr post-hCG). At the late blastocyst stage (141 hr post-hCG), expression was significantly lower in XY control embryos as compared with XX controls. Bex1/Rex3 mRNA expression did not differ between XX and XY androgenones at the blastocyst stage or between gynogenones and XX control embryos. Thus, the Bex1/Rex3 gene does not appear to be regulated directly by genomic imprinting during the preimplantation period, just as it is not regulated by imprinting at later stages. Apparent differences in gene expression may arise through the effects of trophectoderm-specific expression coupled with differences in timing of trophectoderm differentiation between the different classes of embryos and effects of preferential paternal X chromosome inactivation (XCI).  相似文献   

16.
17.
Activation of Akt/Protein Kinase B (PKB) by phosphatidylinositol-3-kinase (PI3K) controls several cellular functions largely studied in mammalian cells, including preimplantation embryos. We previously showed that early mouse embryos inherit active Akt from oocytes and that the intracellular localization of this enzyme at the two-cell stage depends on the T-cell leukemia/lymphoma 1 oncogenic protein, Tcl1. We have now investigated whether Akt isoforms, namely Akt1, Akt2 and Akt3, exert a specific role in blastomere proliferation during preimplantation embryo development. We show that, in contrast to other Akt family members, Akt2 enters male and female pronuclei of mouse preimplantation embryos at the late one-cell stage and thereafter maintains a nuclear localization during later embryo cleavage stages. Depleting one-cell embryos of single Akt family members by microinjecting Akt isoform-specific antibodies into wild-type zygotes, we observed that: (a) Akt2 is necessary for normal embryo progression through cleavage stages; and (b) the specific nuclear targeting of Akt2 in two-cell embryos depends on Tcl1. Our results indicate that preimplantation mouse embryos have a peculiar regulation of blastomere proliferation based on the activity of the Akt/PKB family member Akt2, which is mediated by the oncogenic protein Tcl1. Both Akt2 and Tcl1 are essential for early blastomere proliferation and embryo development.  相似文献   

18.
Oxygen consumption of preimplantation and early postimplantation mouse embryos has been measured using a novel noninvasive ultramicrofluorescence technique, based on an oil-soluble, nontoxic quaternary benzoid compound pyrene, whose fluorescence is quenched in the presence of oxygen. Pyruvate and glucose consumption, lactate production, and glycogen formation from glucose were also measured. Preimplantation mouse embryos of the strain CBA/Ca × C57BL/6 were cultured in groups of 10–30 in 2 μl of modified M2 medium containing 1 mmol l−1 glucose, 0 mmol l−1 lactate, and 0.33 mmol l−1 pyruvate, for between 4–6 hr. Day 6.5 and 7.5 embryos were cultured singly in 40 μl M2 medium for between 2–3 hr. Oxygen consumption was detected at all stages of development, including, for the first time, in the early postimplantation embryo. Consumption remained relatively constant from zygote to morula stages before increasing in the blastocyst and day 6.5–7.5 stages. When expressed as QO2 (μl/mg dry weight/hr), oxygen consumption was relatively constant from the one-cell to morula stages before increasing sharply at the blastocyst stage and declining to preblastocyst levels on days 6.5 and 7.5. Pyruvate was consumed during preimplantation stages, with glucose uptake undetectable until the blastocyst stage. Glucose was the main substrate consumed by the 6.5 and 7.5 day embryo. The proportions of glucose accounted for by lactate appearance were 81%, 86%, and 119% at blastocyst, day 6.5, and day 7.5 stages, respectively. The equivalent figures for glucose incorporated into glycogen were 10.36%, 0.21%, and 0.19%, respectively. The data are consistent with a switch from a metabolism dependent on aerobic respiration during early preimplantation stages to one dependent on both oxidative phosphorylation and aerobic glycolysis at the blastocyst stage, a pattern which is maintained on days 6.5 and 7.5. Our technique for measuring oxygen consumption may have diagnostic potential for selecting viable embryos for transfer following assisted conception techniques in man and domestic animals. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号