首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several neurochemical parameters were studied in brain regions of rats chronically treated with a high concentration of manganese chloride (20 mg MnCl2.4H2O per ml. of drinking water) throughout development until adulthood. Large increases in Mn accumulation were found in all brain regions (hypothalamus, +530%; striatum, +479%; other regions, +152 to +250%) of Mn-treated adult rats. In these animals, Ca levels were decreased (–20 to –46%) in cerebellum, hypothalamus, and cerebral cortex but were increased (+186%) in midbrain. Mg levels were decreased (–12 to –32%) in pons and medulla, midbrain, and cerebellum. Fe levels were increased (+95%) in striatum but were decreased (–28%) in cerebral cortex. Cu levels were increased (+43 to +100%) in pons and medulla and striatum but Zn levels were decreased (–30%) in pons and medulla. Na levels were increased (+22%) in striatum but those of K and Cl remained unchanged. Type A monoamine oxidase activities were decreased (–13 to –16%) in midbrain, striatum, and cerebral cortex, but type B monoamine oxidase activities decreased (–13%) only in hypothalamus. Acetylcholinesterase activities were increased (+20 to +22%) in striatum and cerebellum. The results are consistent with out hypothesis that chronic manganese encephalopathy not only affects brain metabolism of Mn but also that of other metals.We dedicate this paper to Professor Alan N. Davison. Professor Davison has conducted pioneering research in several important areas including: brain development and myelination, aging and Alzheimer's disease, and multiple sclerosis. He encouraged us to investigate the neurochemical mechanisms of neurotoxicity of metal ions, particularly in connection with neurological diseases. His encouragement and continued support facilitated the launching of our multidisciplinary research program in the long-term effects of manganese toxicity on brain development and aging.  相似文献   

2.
Bhargava, H. N. and Y. J. Cao. Effect of chronic administration of morphine, U-50,488H and [ -Pen2, -Pen5]enkephalin on the concentration of cGMP in brain regions and spinal cord of the mouse. Peptides 18(10) 1629–1634, 1997.—The effects of chronic administration and subsequent withdrawal of μ-, κ- and δ-opioid receptor agonists on the levels of cyclic GMP in several brain regions and spinal cord of mice were determined in an attempt to further study the role of NO cascade in opioid actions. The agonists at μ-, κ- and δ-opioid receptor included morphine, U-50,488H and DPDPE, respectively. Tolerance to morphine was associated with highly significant increases in cGMP levels in corpus striatum (41%), cortex (36%), midbrain (73%) and cerebellum (51%) relative to controls. Abstinence caused increases in cGMP levels in corpus striatum (61%) and pons and medulla (45%). Tolerance to U-50,488H resulted in increases in cGMP levels in midbrain (52%) whereas abstinence from U-50,488H increased the cGMP levels in pons and medulla(76%). Tolerance to DPDPE was associated with increases in cGMP levels in hypothalamus (12%) and pons and medulla (33%) but decreases in cerebellum (66%) and spinal cord (58%). Abstinence from DPDPE produced increases in cGMP levels in pons and medulla (14%) but decreases in cerebellum (67%) and spinal cord (50%). Overall treatment with morphine and U-50,488H produced increases in cGMP levels in brain regions whereas DPDPE produced decreases in brain regions and spinal cord. Previous studies have shown that chronic administration of μ- and κ- opioid receptor agonists induce NO synthase (NOS) in certain brain regions and that the inhibitors of NO synthase attenuate tolerance to μ- and κ- but not to δ-opioid receptors agonists. Since activation of NO increases the production of cGMP, the present results demonstrating alterations of cGMP levels by μ-, κ- and δ-opioid receptor agonists are consistent with the behavioral results with NOS inhibitors on tolerance to μ-, κ- and δ-opioid receptor agonists.  相似文献   

3.
Regional Development of Glutamate Dehydrogenase in the at Brain   总被引:1,自引:0,他引:1  
The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant.  相似文献   

4.
For the study of genetic and physiological mechanisms of inherited stress-sensitive arterial hypertension, specific binding of ligands of alpha 1-, alpha 2- and beta-adrenoceptors was measured in 2 strains of rats: Wistar normotensive and ISSAH rats (rats with inherited stress-sensitive arterial hypertension). The maximal binding sites (Bmax) and apparent dissociation constants (Kd) were studied with the alpha 1-adrenergic antagonist 3H-prazosin, alpha 2-adrenergic agonist 3H-clonidine and 3H-dihydroalprenolol, a beta 1-receptor antagonist. Four brain regions were investigated: frontal cortex, hypothalamus, pons and medulla oblongata. In comparison with normotensive controls, hypertensive rats had significantly greater density of the alpha 1-adrenoceptors in the medulla oblongata. However, the number of hypothalamic alpha 1-adrenoceptors was significantly reduced in these animals. The same significantly lower alpha 2-adrenoreceptor density was found in the hypothalamus and the pons, and lower, beta-adrenoceptors density in the medulla oblongata. It was concluded that brain adrenoceptors are involved in the mechanisms of development of inherited stress-sensitive hypertensive syndrome.  相似文献   

5.
Coupling of CNS receptors to phosphoinositide turnover has previously been found to vary with both age and brain region. To determine whether the metabolism of the second messenger inositol 1,4,5-trisphosphate also displays such variations, activities of inositol 1,4,5-trisphosphate 5'-phosphatase and 3'-kinase were measured in developing rat cerebral cortex and adult rat brain regions. The 5'-phosphatase activity was relatively high at birth (approximately 50% of adult values) and increased to adult levels by 2 weeks postnatal. In contrast, the 3'-kinase activity was low at birth and reached approximately 50% of adult levels by 2 weeks postnatal. In the adult rat, activities of the 3'-kinase were comparable in the cerebral cortex, hippocampus, and cerebellum, whereas much lower activities were found in hypothalamus and pons/medulla. The 5'-phosphatase activities were similar in cerebral cortex, hippocampus, hypothalamus, and pons/medulla, whereas 5- to 10-fold higher activity was present in the cerebellum. The cerebellum is estimated to contain 50-60% of the total inositol 1,4,5-trisphosphate 5'-phosphatase activity present in whole adult rat brain. The localization of the enriched 5'-phosphatase activity within the cerebellum was examined. Application of a histochemical lead-trapping technique for phosphatase indicated a concentration of inositol 1,4,5-trisphosphate 5'-phosphatase activity in the cerebellar molecular layer. Further support for this conclusion was obtained from studies of Purkinje cell-deficient mutant mice, in which a marked decrement of cerebellar 5'-phosphatase was observed. These results suggest that the metabolic fate of inositol 1,4,5-trisphosphate depends on both brain region and stage of development.  相似文献   

6.
Two isoforms of 11β-hydroxysteroid dehydrogenase (11β-HSD) catalyse the interconversion of active cortisol to inactive cortisone; 11β-HSD1 is a low affinity, NADP(H)-dependent dehydrogenase/oxo-reductase, and 11β-HSD2 a high affinity, NAD-dependent dehydrogenase. Because of the importance of 11β-HSD in regulating corticosteroid hormone action, we have analysed the distribution of the 11β-HSD isoforms in human adult and foetal tissues (including placenta), and, in addition have performed a series of substrate specificity studies on the novel, kidney 11β-HSD2 isoform. Using an RT-PCR approach, we failed to detect 11β-HSD1 mRNA in any human mid-gestational foetal tissues. In contrast 11β-HSD2 mRNA was present in foetal lung, adrenal, colon and kidney. In adult tissues 11β-HSD2 gene expression was confined to the mineralocorticoid target tissues, kidney and colon, whilst 11β-HSD1 was expressed predominantly in glucocorticoid target tissues, liver, lung, pituitary and cerebellum. In human kidney homogenates, 11-hydroxylated progesterone derivatives, glycyrrhetinic acid, corticosterone and the “end products” cortisone and 11-dehydrocorticosterone were potent inhibitors of the NAD-dependent conversion of cortisol to cortisone. Finally high levels of 11β-HSD2 mRNA and activity were observed in term placentae, which correlated positively with foetal weight. The tissue-specific distribution of the 11β-HSD isoforms is in keeping with their differential roles, 11β-HSD1 regulating glucocorticoid hormone action and 11β-HSD2 mineralocorticoid hormone action. The correlation of 11β-HSD2 activity in the placenta with foetal weight suggests, in addition, a crucial role for this enzyme in foetal development, possibly in mediating ontogeny of the foetal hypothalamo-pituitary-adrenal axis.  相似文献   

7.
Excessive foetal exposure to glucocorticoids retards growth and “programmes” adult hypertension in rats. Placental 11β-hydroxysteroid dehydrogenase (11β-HSD), which catalyses the conversion of corticosterone and cortisol to inert 11 keto-products, normally protects the foetus from excess maternal glucocorticoids. In both rats and humans there is considerable natural variation in placental 11β-HSD, and enzyme activity correlates with birth weight. Moreover, inhibition of placental 11β-HSD in the rat reduces birth weight and produces hypertensive adult offspring, many months after prenatal treatment with enzyme inhibitors; these effects are dependent upon maternal adrenal products. These data suggest that placental 11β-HSD, by regulating foetal exposure to maternal glucocorticoids, crucially determines foeto-placental growth and the programming of hypertension. Maternal protein restriction during pregnancy also produces hypertensive offspring and selectively attenuates placental 11β-HSD activity. Thus, deficiency of the placental barrier to maternal glucocorticoids may represent a common pathway between the maternal environment and foeto-placental programming of later disease. These data may, at least in part, explain the human epidemiological observations linking early life events to the risk of subsequent hypertension. The recent characterization, purification and cDNA cloning of a distinct human placental 11β-HSD (type 2) will aid the further study of these intriguing findings.  相似文献   

8.
Some effects of aging processes on the neurochemical features of central transmitter-identified neuronal populations have been investigated by means of immunocytochemistry and receptor autoradiographic techniques coupled with image analysis. A selective decrease of tyrosine hydroxylase immunoreactivity in the ventrolateral region of the arcuate nucleus in aged rats was observed. The level and turnover (recovery after irreversible blockade of monoamine receptors with the peptide coupling agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline) of 2-adrenergic ([3H]paraaminoclonidine binding) and D2 dopamine ([3H]spiperone binding) receptors were reduced in most regions of the rat brain. Peptide receptors showed a more complex pattern of change, since while μ opiate receptors (preferentially labeled with [3H]etorphine binding) were reduced in the old animals, δ opiate ([3H]DSTLenkephalin binding) receptors were affected only in certain areas. The effect of irreversible blockade of monoamine receptors on μ and δ opiate receptors was also studied in young adult and aged rats. A δ but not μ opiate receptor up-regulation was observed after monoamine receptor blockade in the young adult animals. This effect was greatly reduced in the n. caudatus-putamen, n. accumbens and tuberculum olfactorium of the old animals.  相似文献   

9.
Hormonal and neurotransmitter environment of nondifferentiated cells in the developing brain determines many of gender-specific behavioural and neuroendocrine functions. Early postnatal and long-term effects of maternal stress or prenatal glucocorticoid on sex-related peculiarities of the brain morphology, biogenic monoamine turnover, testosterone metabolism, hypothalamic noradrenaline (NA) and adrenocortical responses to an acute stress were studied in Wistar rat offsprings. Maternal stress (1 h immobilization daily for gestational days 15–21) prevented development of sexual dimorphism in neuronal cell nuclei volumes in suprachiazmatic nucleus (SCN) in 10 day old pups. That was associated with a disappearance of male–female differences in NA and 5-hydroxytryptamine turnover in the preoptic area (POA) and dopamine (DA) turnover in the mediobasal hypothalamus (MBH) by decreasing them in male pups. Hydrocortisone acetate (5 mg daily during the last week of pregnancy) produced changes in NA turnover in the POA of males and females which were quite similar to those after maternal stress. Changes in aromatase and 5-reductase activities in the POA of male pups were quite opposite as affected by maternal stress or prenatal glucocorticoid. Sexual differences in 5-reductase activity in the MBH appeared due to its increase in prenatally stressed male pups. In contrast to adult males, in adult females maternal stress did not restrict hypothalamic NA and blood plasma corticosterone response to acute stress (1 h immobilization). Our findings on morphology and functions of gender-related developing brain areas stand in correlation with modifying effects of maternal stress and prenatal glucocorticoid on behavior and neuroendocrine regulations.  相似文献   

10.
Exposure to high altitude (HA) affects neurotransmitter levels in the adult brain and induces a number of neurologic and behavioral disturbances. The present work was undertaken to investigate the effects of chronic exposure to a moderate hypoxic environment (natural altitude of 3800 m, 12.8% O2 in inspired air) on the development from birth until adulthood of brain monoamine enzymes in rats. The activity of synthesizing (tyrosine and tryptophan hydroxylase) and catabolizing (catechol-O-methyl transferase and monoamine oxidase) enzymes was studied in discrete brain areas (cerebral cortex, cerebellum, mesodiencephalon, hypothalamus, corpus striatum, and pons medulla) and was shown to be selectively affected by HA, depending on the age of the animal and the brain region. In general, enzyme activity was less susceptible to HA during the first week after birth than at later ages, some brain areas such as the hypothalamus showing significant alterations in some enzymes throughout development, and in all enzymes at adulthood. Furthermore, in all brain areas and at all ages, tyrosine and tryptophan hydroxylase were more affected by HA than the catabolizing enzymes, and their activity was increased in some areas (e.g., cerebral cortex and cerebellum) but decreased in other areas (e.g., hypothalamus, mesodiencephalon, corpus striatum). These enzymatic changes and the corresponding alterations in precursor amino acids, particularly tryptophan, seem to be due more to the direct effect of hypoxia on oxygen-dependent enzymes, than to the stress. It appears that an hypoxic environment may provoke both early and long-term alterations in catecholamine and serotonin metabolism, thus neurotransmitter imbalances may explain some of the alterations in neurologic and endocrine development characteristic of the hypoxic animal.Part of this report was presented at the Sixth International Meeting of the International Society of Neurochemistry, Copenhagen, 1977.  相似文献   

11.
In a previous report, alterations of the serotonin metabolism were previously reported in mice intoxicated with repeated low doses of soman. In order to better understand the effects induced by repeated low-dose exposure to organophosphorus compounds on physiological and behavioural functions, the levels of endogenous monoamines (serotonin and dopamine) in different brain areas in mice intoxicated with sublethal dose of (O-ethyl-S-[2(di-isopropylamino) ethyl] methyl phosphonothioate) (VX) were analysed by HPLC method with electrochemical detection. Animals were injected once a day for three consecutive days with 0.10 LD50 of VX (5 μg/kg, i.p). Neither severe signs of cholinergic toxicity nor pathological changes in brain tissue of exposed animals were observed. Cholinesterase (ChE) activity was only inhibited in plasma (a maximum of 30 % inhibition 24 h after the last injection of VX), but remained unchanged in the brain. Serotonin and dopamine (DA) metabolism appeared significantly modified. During the entire period of investigation, at least one of the three parameters investigated (i.e. DA and DOPAC levels and DOPAC/DA ratio) was modified. During the toxic challenge, an increase of the serotonin metabolism was noted in hippocampus (HPC), hypothalamus/thalamus, pons medulla and cerebellum (CER). This increase was maintained 4 weeks after exposure in HPC, pons medulla and CER whereas a decrease in cortex 3 weeks after the toxic challenge was observed. The lack of correlation between brain ChE activity and neurochemical outcomes points out to independent mechanisms. The involvement in possibly long-lasting behavioural disorders is discussed.  相似文献   

12.
The effect of naloxone-precipitated withdrawal after acute morphine was studied on the concentrations of noradrenaline (NA), 4-hydroxy-3-methoxyphenylethyleneglycol (MHPG), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and on the metabolite/parent amine ratios MHPG/NA, DOPAC/DA and HVA/DA, in eight regions of the guineapig brain. Guinea-pigs were treated with a single dose of morphine sulphate (15 mg/kg s.c.) or saline (control) and 2h later with naloxone hydrochloride (15 mg/kg s.c.) to precipitate withdrawal. The animals were decapitated at 0.5 h or 1 h after naloxone injections and their brains analysed for monoamine concentrations by HPLC-ECD. At 0.5 h after naloxone-precipitated withdrawal NA and MHPG levels, and the MHPG/NA ratio, were increased in the hypothalamus, and the NA levels were increased in the hypothalamus, medulla/pons and cortex 1 h after naloxone. Naloxoneprecipitated withdrawal also produced increased DA metabolism in the cortex, midbrain and medulla 0.5 h later, and in the cortex, hypothalamus and striatum 1 h later. Hence naloxone-precipitated withdrawal from acute morphine treatment produced a complex pattern of increased synthesis and metabolism of NA and DA which varied over time and with the brain region examined.  相似文献   

13.
In human foetal brain ontogeny the cerebral activity of succinate oxidoreductase (EC 1.3.99.1), i.e. succinate dehydrogenase (SDH), is higher than the cerebellar activity. With rise in foetal body weight the activity in all the brain regions gradually declines. SDH in all the brain regions shows two high-activity periods, one at 20-35 g and another at 110-220 g body weight. The enzyme exhibits a craniocaudal pattern of development. At all times of gestation, L-glutamate:ammonia ligase (EC 6.3.1.2), i.e. glutamine synthetase, activity in the spinal cord and medulla is higher than in the other three regions. At 190 g body weight glutamine synthetase shows an activity peak in all brain regions. Monoamine:oxygen oxidoreductase (EC 1.4.3.4). i.e. monoamine oxidase (MAO), is present much before the onset of electrical activity. It develops caudocranially and exhibits a biphasic pattern of development in all the regions. It increases considerably in the medulla and the spinal core towards late gestational periods.  相似文献   

14.
Eight weeks of latent iron deficiency in weaned rats maintained on an experimental low iron content diet (18-20 mg/kg) did not significantly alter the packed cell volume and hemoglobin concentration; however, the hepatic and brain nonheme iron contents decreased by 66% and 21% (p less than 0.001), respectively. The tryptophan concentration decreased by 31% and 34% in liver and brain, respectively, in rats on experimental diet (p less than 0.01). The brain 5-hydroxytryptamine and 5-hydroxyindoleacetic acid contents were reduced by 21% and 23% (p less than 0.01 and p less than 0.02), respectively. However, in the brain, weight, protein, DNA, and the activities of monoamine oxidase, aldehyde dehydrogenase, and liver tryptophan oxygenase were found to remain unaltered. When rehabilitated with a diet containing 390 mg/kg iron, rats previously maintained on the experimental diet for 2 weeks showed partial recovery in tryptophan levels both in liver and brain. However, brain 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels remained unaltered. The hepatic iron content improved without any change in brain iron content. The latent iron deficiency produced significant alterations in the metabolism of 5-hydroxytryptamine and brain iron content that could not be recovered 2 weeks after the iron rehabilitation.  相似文献   

15.
The effects of neonatal 6-hydroxydopamine (6-OH-DA) treatment (systemic administration) on norasrenaline (NA) metabolism, trun over, and receptor charasteristics have been investigated in rat brain in the adult atage. This treatment is known to preferentially affect the locus coeruleus (LC) NA system leading to a marked NA denervation in the cerebral cortex and a hyperinnervation of NA nerve terminals in the pons and medulla oblongata without influencing the LC perikarya. The main NA metabolite, 3-methoxy-4-hydroxyphenylglycol (MOPEG) was reduced by about 70% in the cerebral cortex after 6-OH-DA-treatment at birth while the endogenous NA was almost completely depleted (-92%). The MOPEG levels were not significantly changed in the pons medulla after 6-OH-DA treatment in contrast to the 60% increase of the endogenous NA concentration. The relative reduction of NA in the cerebral cortex of 6-OH-Da treated rats increased in the cerebral cortex is increased after 6-OH-DA, while decreased in the pons-medulla, possibly related to changes in the activation of presynaptic α-adrenoreceptors in both regions. NA-induced formation of cAMP in vitro was found to be markedly increased in the cerebral cortex after 6-OH-DA, whereas no consistent change was observed in the pons medulla. Measurements of α- and β-receptor binding in vitro using radioligand techniques showed an increase of binding sites (20%–50%) for both receptors in the neocortex after 6-OH-DA, whereas no changes were observed in the pons medulla. The 6-OH-Da induced changes in NA turnover, cAMP generating systems, and receptor density may all represent compensatory processes following the altered development of the NA neurons induced by 6-OH-DA.  相似文献   

16.
A 569 bp probe against the β-chain of hepatotropin was used to examine expression of RNA for this growth factor in human adult and foetal liver, foetal kidney and pancreas, and rat liver after partial hepatectomy. Low level expression of a 6kb RNA occurred in human adult and normal rat liver. 70% hepatectomy increased expression, peaking at 10 h and returning to near normal levels 24 h after resection. The 6 kb band was strongly expressed in human foetal liver, as compared with adult, but not in foetal kidney or pancreas, suggesting a major role for hepatotropin in both foetal development and regeneration of the liver.  相似文献   

17.
In anesthetized guinea pigs, we examined heart rate, arterial pressure, and GABA levels in four brain regions after systemic administration of 3-mercaptopropionic acid, an inhibitor of GABA synthesis. After i.p. injection of 195 mg/kg, significant reductions in GABA were first noted at 15 minutes in the cerebellum (–39%), 30 minutes in the hypothalamus (–27%), 60 minutes in the medulla pons (–34%) and 90 minutes in the cerebral cortex (–43%). Cardiovascular function was unaltered at 15 minutes but heart rate and arterial pressure were both significantly elevated at 30 minutes. By 60 minutes, however, heart rate had fallen below control. Injection of a lower dose (97.5 mg/kg i.p.) of 3-MP produced significant increases in heart rate and arterial pressure in 4 of 11 guinea pigs tested. When GABA levels in the same four brain regions were examined at 90 minutes and compared to corresponding levels from vehicle-treated guinea pigs, significant reductions were seen only in the hypothalamus and only in those animals displaying tachycardia and pressor responses. These findings are consistent with our previous results indicating that decreased GABA levels in the hypothalamus and in the medulla pons are responsible for the increases and decreases in heart rate, respectively, seen after systemic administration of 3-mercaptopropionic acid.Special issue dedicated to Dr. Morris H. Aprison  相似文献   

18.
For elucidation of thyroid hormone-induced responsiveness of fish brain, various doses (0.012, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2 and 4 μg/g) of triiodothyronine (T3) were injected in Singi fish, Heteropneustes fossilis (Bloch), for 3 consecutive days and the changes in cytosolic NADP-dependent malic enzyme (ME, EC 1.1.1.40) activity in whole brain tissue were determined. Compared to the control, the ME activity increased with lower doses (0.012, 0.025 and 0.05 μg/g) and decreased with higher doses (1, 2 and 4 μg/g) of T3, showing a biphasic nature of thyroid hormone action. The enzyme activity remained unaltered with 0.1, 0.25 and 0.5 μg of T3/g in comparison to the control. Immersion of the fishes in cycloheximide-containing medium (0.5 mg/l) inhibited the T3 (0.025 μg/g)-induced rise in ME activity. On the other hand, the NAD-dependent cytosolic malate dehydrogenase (EC 1.1.1.37) activity and the total protein content of brain cytosol remained unaltered with all doses of T3 used. The thyroid hormone specificity of cytosolic NADP-dependent malic enzyme in fish brain is thus documented.  相似文献   

19.
Hepatic Encephalopathy (HE) is one of the most common complications of acute liver diseases and is known to have profound influence on the brain. Most of the studies, available from the literature are pertaining to whole brain homogenates or mitochondria. Since brain is highly heterogeneous with functions localized in specific areas, the present study was aimed to assess the oxidative stress in different regions of brain-cerebral cortex, cerebellum and pons medulla during acute HE. Acute liver failure was induced in 3-month old adult male Wistar rats by intraperitoneal injection of thioacetamide (300 mg/kg body weight for two days), a well known hepatotoxin. Oxidative stress conditions were assessed by free radical production, lipid peroxidation, nitric oxide levels, GSH/GSSG ratio and antioxidant enzyme machinery in three distinct structures of rat brain-cerebral cortex, cerebellum and pons medulla. Results of the present study indicate a significant increase in malondialdehyde (MDA) levels, reactive oxygen species (ROS), total nitric oxide levels [(NO) estimated by measuring (nitrites + nitrates)] and a decrease in GSH/GSSG ratio in all the regions of brain. There was also a marked decrease in the activity of the antioxidant enzymes-glutathione peroxidase, glutathione reductase and catalase while the super oxide dismutase activity (SOD) increased. However, the present study also revealed that pons medulla and cerebral cortex were more susceptible to oxidative stress than cerebellum. The increased vulnerability to oxidative stress in pons medulla could be due to the increased NO levels and increased activity of SOD and decreased glutathione peroxidase and glutathione reductase activities. In summary, the present study revealed that oxidative stress prevails in different cerebral regions analyzed during thioacetamide-induced acute liver failure with more pronounced effects on pons medulla and cerebral cortex. Murthy Ch.R.K—Deceased while in service.  相似文献   

20.
The effects of neonatal 6-hydroxydopamine (6-OH-DA) treatment (systemic administration) on noradrenaline (NA) metabolism, turn over, and receptor characteristics have been investigated in rat brain in the adult stage. This treatment is known to preferentially affect the locus coeruleus (LC) NA system leading to a marked NA denervation in the central cortex and hyperinnervation of NA nerve terminals in the pons and medulla oblongata without influencing the LC perikarya. The main NA metabolite, 3-methoxy-4-hydroxy-phenylglycol (MOPEG) was reduced by about 70% in the cerebral cortex after 6-OH-DA treatment at birth while the endogenous NA was almost completely depleted (-92%). The MOPEG levels were not significantly changed in the pons medulla after 6-OH-DA treatment in contrast to the 60% increase of the endogenous NA concentration. The relative reduction of NA in the cerebral cortex of 6-OH-DA treated rats increased in the cerebral cortex following administration of the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine (H44/68) compared to the control, while the H44/68 induced depletion of NA was reduced in the pons medulla after 6-OH-DA. The steady-state level of endogenous NA and the effect of H44/68 were unchanged in the LC perikarya after 6-OH-DA treatment. These results indicate that the NA turn over in remaining NA nerve terminals in the cerebral cortex is increased after 6-OH-DA, while decreased in the pons-medulla, possible related to changes in the activation of presynaptic alpha-adrenoreceptors in both regions. NA-induced formation of cAMP in vitro was found to be markedly increased in the cerebral cortex after 6-OH-DA, whereas no consistent change was observed in the pons medulla. Measurements of alpha- and beta-receptor binding in vitro using radioligand techniques showed an increase of binding sites (20%--50%) for both receptors in the neocortex aster 6-OH-DA, whereas no changes were observed in the pons medulla. The 6-OH-DA induced changes in NA turnover, cAMP generating systems, and receptor density may all represent compensatory processes following the altered development of the NA neurons induced by 6-OH-DA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号