首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
TLRs play a crucial role in early host defense against invading pathogens. In the seminiferous epithelium, Sertoli cells are the somatic nurse cells that mechanically segregate germ cell autoantigens by means of the blood-tubular barrier and create a microenvironment that protects germ cells from both interstitial and ascending invading pathogens. The objective of this study was to examine TLR expression and their functional responses to specific agonists in mouse Sertoli cells. We measured the expression of TLR2, TLR4, TLR5, and TLR6 mRNAs and confirmed by FACS analysis the presence of proteins TLR2 and TLR5 on which we focused our study. Stimulation of Sertoli cells with macrophage-activating lipopeptide-2, agonist of TLR2/TLR6, and with flagellin, agonist of TLR5, induces augmented secretion of the chemokine MCP-1. To assess the functional significance of MCP-1 production following TLR stimulation, conditioned medium from either macrophage-activating lipopeptide-2 or flagellin-treated Sertoli cells was tested for in vitro chemotaxis assay, and a significant increase of macrophage migration was observed in comparison with unstimulated conditioned medium. Moreover, we studied the role of NF-kappaB and of MAPKs in regulating TLR-mediated MCP-1 secretion by using inhibitors specific for each transduction pathway and we demonstrated a pivotal role of the IkappaB/NF-kappaB and JNK systems. In addition, TLR2/TLR6 and TLR5 stimulation induces increased ICAM-1 expression in Sertoli cells. Collectively, this study demonstrates the novel ability of Sertoli cells to potentially respond to a wide variety of bacteria through TLR stimulation.  相似文献   

3.
Reovirus infection of the murine spinal cord (SC) was used as a model system to investigate innate immune responses during viral myelitis, including the activation of glia (microglia and astrocytes) and interferon (IFN) signaling and increased expression of inflammatory mediators. Reovirus myelitis was associated with the pronounced activation of SC glia, as evidenced by characteristic changes in cellular morphology and increased expression of astrocyte and microglia-specific proteins. Expression of inflammatory mediators known to be released by activated glia, including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), chemokine (C-C motif) ligand 5 (CCL 5), chemokine (C-X-C motif) ligand 10 (CXCL10), and gamma interferon (IFN-γ), was also significantly upregulated in the SC of reovirus-infected animals compared to mock-infected controls. Reovirus infection of the mouse SC was also associated with increased expression of genes involved in IFN signaling, including IFN-stimulated genes (ISG). Further, reovirus infection of mice deficient in the expression of the IFN-α/β receptor (IFNAR(-/-)) resulted in accelerated mortality, demonstrating that IFN signaling is protective during reovirus myelitis. Experiments performed in ex vivo SC slice cultures (SCSC) confirmed that resident SC cells contribute to the production of at least some of these inflammatory mediators and ISG during reovirus infection. Microglia, but not astrocytes, were still activated, and glia-associated inflammatory mediators were still produced in reovirus-infected INFAR(-/-) mice, demonstrating that IFN signaling is not absolutely required for these neuroinflammatory responses. Our results suggest that activated glia and inflammatory mediators contribute to a local microenvironment that is deleterious to neuronal survival.  相似文献   

4.
5.
Finsen B  Owens T 《FEBS letters》2011,585(23):3806-3812
In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II receptors on astrocytes and immunoregulatory mediators such as Type I interferons which regulate cellular traffic. Myeloid cells at the blood-brain barrier present antigen to T cells and influence cytokine effector function. Myelin-specific T cells interact with microglia and promote differentiation of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy.  相似文献   

6.
Herpes simplex virus 1 (HSV-1) causes a spectrum of disease, including herpes labialis, herpes keratitis, and herpes encephalitis, which can be lethal. Viral recognition by pattern recognition receptors plays a central role in cytokine production and in the generation of antiviral immunity. The relative contributions of different Toll-like receptors (TLRs) in the innate immune response during central nervous system infection with HSV-1 have not been fully characterized. In this study, we investigate the roles of TLR2, TLR9, UNC93B1, and the type I interferon (IFN) receptor in a murine model of HSV-1 encephalitis. TLR2 is responsible for detrimental inflammatory cytokine production following intracranial infection with HSV-1, and the absence of TLR2 expression leads to increased survival in mice. We prove that inflammatory cytokine production by microglial cells, astrocytes, neutrophils, and monocytes is mediated predominantly by TLR2. We also demonstrate that type I IFNs are absolutely required for survival following intracranial HSV-1 infection, as mice lacking the type I IFN receptor succumb rapidly following infection and have high levels of HSV in the brain. However, the absence of TLR9 does not impact survival, type I IFN levels, or viral replication in the brain following infection. The absence of UNC93B1 leads to a survival disadvantage but does not impact viral replication or type I IFN levels in the brain in HSV-1-infected mice. These results illustrate the complex but important roles that innate immune receptors play in host responses to HSV-1 during infection of the central nervous system.  相似文献   

7.
Brain abscesses arise following parenchymal infection with pyogenic bacteria and are typified by inflammation and edema, which frequently results in a multitude of long-term health problems. The impact of adaptive immunity in shaping continued innate responses during late-stage brain abscess formation is not known but is important, because robust innate immunity is required for effective bacterial clearance. To address this issue, brain abscesses were induced in TCR αβ knockout (KO) mice, because CD4(+) and NKT cells represented the most numerous T cell infiltrates. TCR αβ KO mice exhibited impaired bacterial clearance during later stages of infection, which was associated with alterations in neutrophil and macrophage recruitment, as well as perturbations in cytokine/chemokine expression. Adoptive transfer of either Th1 or Th17 cells into TCR αβ KO mice restored bacterial burdens and innate immune cell infiltrates to levels detected in wild-type animals. Interestingly, adoptively transferred Th17 cells demonstrated plasticity within the CNS compartment and induced distinct cytokine secretion profiles in abscess-associated microglia and macrophages compared with Th1 transfer. Collectively, these studies identified an amplification loop for Th1 and Th17 cells in shaping established innate responses during CNS infection to maximize bacterial clearance and differentially regulate microglial and macrophage secretory profiles.  相似文献   

8.
RICK is a kinase that has been implicated in Nod1 and Nod2 signaling. In addition, RICK has been proposed to mediate TLR signaling in that its absence confers reduced responses to certain bacterial products such as LPS. We show here that macrophages and mice lacking RICK are defective in their responses to Nod1 and Nod2 agonists but exhibit unimpaired responses to synthetic and highly purified TLR agonists. Furthermore, production of chemokines induced by the bacterial dipeptide gamma-d-glutamyl-meso-diaminopimelic acid was intact in MyD88 deficient mice but abolished in RICK-null mice. Stimulation of macrophages with muramyl dipeptide, the Nod2 activator, enhanced immune responses induced by LPS, IFN-gamma, and heat-killed Listeria in wild-type but not in RICK- or Nod2-deficient macrophages. Finally, we show that the absence of RICK or double deficiency of Nod1 and Nod2 was associated with reduced cytokine production in Listeria-infected macrophages. These results demonstrate that RICK functions in innate immunity by mediating Nod1 and Nod2 signaling but not TLR-mediated immune responses.  相似文献   

9.
Microglia are essential cellular components of a well-functioning central nervous system (CNS). The development and establishment of the microglial population differs from the other major cell populations in the CNS i.e. neurons and macroglia (astrocytes and oligodendrocytes). This different ontogeny gives microglia unique properties. In recent years detailed studies of the microglial population have been greatly facilitated by the use of bone marrow (BM) chimeric animals. Experimental BM transplants have provided the opportunity to trace and investigate how BM cells migrate into the CNS and settle to become microglia. Furthermore various functional properties of microglia in the normal and pathological CNS are now being revealed because of combinations of BM transplantations and experimental disease models. Here, we describe some of the latest findings in microglial biology and discuss the potential for using microglia in therapeutic interventions.  相似文献   

10.
We investigated the properties of leishmania exosomes with respect to influencing innate and adaptive immune responses. Exosomes from Leishmania donovani modulated human monocyte cytokine responses to IFN-γ in a bimodal fashion by promoting IL-10 production and inhibiting that of TNF-α. Moreover, these vesicles were inhibitory with respect to cytokine responses (IL-12p70, TNF-α, and IL-10) by human monocyte-derived dendritic cells. Exosomes from wild-type (WT) L. donovani failed to prime monocyte-derived dendritic cells to drive the differentiation of naive CD4 T cells into IFN-γ-producing Th1 cells. In contrast, vesicles from heat shock protein (HSP)100(-/-) L. donovani showed a gain-of-function and proinflammatory phenotype and promoted the differentiation of naive CD4 lymphocytes into Th1 cells. Proteomic analysis showed that exosomes from WT and HSP100(-/-) leishmania had distinct protein cargo, suggesting that packaging of proteins into exosomes is dependent in part on HSP100. Treatment of C57BL/6 mice with WT L. donovani exosomes prior to challenge with WT organisms exacerbated infection and promoted IL-10 production in the spleen. In contrast, HSP100(-/-) exosomes promoted spleen cell production of IFN-γ and did not adversely affect hepatic parasite burdens. Furthermore, the proparasitic properties of WT exosomes were not species specific because BALB/c mice exposed to Leishmania major exosomes showed increased Th2 polarization and exacerbation of disease in response to infection with L. major. These findings demonstrate that leishmania exosomes are predominantly immunosuppressive. Moreover, to our knowledge, this is the first evidence to suggest that changes in the protein cargo of exosomes may influence the impact of these vesicles on myeloid cell function.  相似文献   

11.
A growing body of recent studies bring into light an important cross-talk between immune response and metabolism not only at the level of the organism as a whole, but also at the level of the individual cells. Cellular bioenergetics functions not only as a power plant to fuel up the cells, but the intermediate metabolites are shown to play an important role to modulate cellular responses. It is especially the pathways through which a cell metabolizes glucose that have been recently shown to influence both innate and adaptive immune responses, with oxidative phosphorylation used by resting or tolerant cells, while aerobic glycolysis (also termed ‘Warburg effect’) fueling activated cells. In this review we will address how the center metabolism shifts upon activation in the innate immune cells and how the intermediate metabolites modulate the function of immune cells.  相似文献   

12.
Active hexose correlated compound (AHCC) is a mixture of polysaccharides, amino acids, lipids and minerals derived from cocultured mycelia of several species of Basidiomycete mushrooms. AHCC has been implicated to modulate immune functions and plays a protective role against infection. However, the potential role of AHCC in tumor immune surveillance is unknown. In this study, C57BL/6 mice were orally administered AHCC or water, followed by tumor cell inoculation. We showed that compared to pure water-treated mice, AHCC treatment significantly delayed tumor development after inoculation of either melanoma cell line B16F0 or lymphoma cell line EL4. Treatment with AHCC enhanced both Ag-specific activation and proliferation of CD4+ and CD8+ T cells, increased the number of tumor Ag-specific CD8+ T cells, and more importantly, increased the frequency of tumor Ag-specific IFN-γ producing CD8+ T cells. Interestingly, AHCC treatment also showed increased cell number of NK and γδ T cells, indicating the role of AHCC in activating these innate-like lymphocytes. In summary, our results demonstrate that AHCC can enhance tumor immune surveillance through regulating both innate and adaptive immune responses.  相似文献   

13.
Leptin is produced primarily by adipocytes and functions in a feedback loop regulating body weight. Leptin deficiency results in severe obesity and a variety of endocrine abnormalities in animals and humans. Several studies indicated that leptin plays an important role in immune responses. It exerts protective anti-inflammatory effects in models of acute inflammation and during activation of innate immune responses. In contrast, leptin stimulates T lymphocyte responses, thus having rather a proinflammatory role in experimental models of autoimmune diseases. Clinical studies have so far yielded inconsistent results, suggesting a rather complex role for leptin in immune-mediated inflammatory conditions in humans.  相似文献   

14.
Microglia: activation and their significance in the central nervous system   总被引:6,自引:0,他引:6  
Microglia are resident monocyte-lineaged cells in the brain. Their characteristic feature is that they react to injury and diseases of the brain and become morphologically and functionally activated. Although some trigger molecules which activate microglia are predicted to be released from injured or affected cells, such molecules have not yet been identified. The main role of activated microglia is believed to be in brain defense, as scavengers of dead cells, and as immune or immunoeffector cells. Recent biochemical and neurobiological studies have further indicated that they significantly affect the pathological state and/or regulate the regenerative state and remodeling of the brain by producing a variety of biologically active molecules including cytotoxic and neurotrophic molecules.  相似文献   

15.
All but the smallest-diameter axons in the central nervous system are myelinated, but the signals that initiate myelination are unknown. Our prior work has shown that integrin signaling forms part of the cell–cell interactions that ensure only those oligodendrocytes contacting axons survive. Here, therefore, we have asked whether integrins regulate the interactions that lead to myelination. Using homologous recombination to insert a single-copy transgene into the hypoxanthine phosphoribosyl transferase (hprt) locus, we find that mice expressing a dominant-negative β1 integrin in myelinating oligodendrocytes require a larger axon diameter to initiate timely myelination. Mice with a conditional deletion of focal adhesion kinase (a signaling molecule activated by integrins) exhibit a similar phenotype. Conversely, transgenic mice expressing dominant-negative β3 integrin in oligodendrocytes display no myelination abnormalities. We conclude that β1 integrin plays a key role in the axoglial interactions that sense axon size and initiate myelination, such that loss of integrin signaling leads to a delay in myelination of small-diameter axons.  相似文献   

16.
Neuroinflammation often starts with the invasion of T lymphocytes into the CNS leading to recruitment of macrophages and amplification of inflammation. In this study, we show that dendritic cells (DCs) facilitate T-T cell help in the CNS and contribute to the amplification of local neuroinflammation. We adoptively transferred defined amounts of naive TCR-transgenic (TCR) recombination-activating gene-1-deficient T cells into another TCR-transgenic mouse strain expressing different Ag specificity. Following adoptive transfers, we coinjected DCs that presented one or multiple Ags into the brain and followed the activation of T cells with defined specificities simultaneously. Injection of DCs presenting both Ags simultaneously led to significantly higher infiltration of T cells into the brain compared with injection of a mixture of DCs pulsed with two Ags separately. DCs mediated either cooperative or competitive interactions between T cell populations with different specificities depending upon their MHC-restricting element usage. These results suggest that DC-mediated cooperation between brain-infiltrating T cells of different Ag specificities in the CNS plays an important role in regulation of neuroinflammation. This work also implies that blocking Ag-specific responses may block not only the targeted specificities, but may also effectively block their cooperative assistance to other T cells. Therefore, these data justify more attention to Ag-specific therapeutic approaches for neuroinflammation.  相似文献   

17.
Although the intestinal epithelium is equipped with multiple defense systems that sense bacterial components, transmit alarms to the immune system, clear the bacteria, and renew the injured epithelial lining, mucosal bacterial pathogens are capable of efficiently colonizing the intestinal epithelium, because they have evolved systems that modulate the inflammatory and immune responses of the host and exploit the harmful environments as replicative niches. In this review we highlight current topics concerning Shigella's tactics that interfere with the innate immune systems.  相似文献   

18.
Host organisms have developed sophisticated antiviral responses in order to defeat emerging influenza A viruses (IAVs). At the same time IAVs have evolved immune evasion strategies. The immune system of mammals provides several lines of defence to neutralize invading pathogens or limit their replication. Here, we summarize the mammalian innate and adaptive immune mechanisms involved in host defence against viral infection and review strategies by which IAVs avoid, circumvent or subvert these mechanisms. We highlight well‐characterized, as well as recently described features of this intriguing virus‐host molecular battle.  相似文献   

19.
Rabies virus (RV) induces encephalomyelitis in humans and animals. However, the pathogenic mechanism of rabies is not fully understood. To investigate the host responses to RV infection, we examined and compared the pathology, particularly the inflammatory responses, and the gene expression profiles in the brains of mice infected with wild-type (wt) virus silver-haired bat RV (SHBRV) or laboratory-adapted virus B2C, using a mouse genomic array (Affymetrix). Extensive inflammatory responses were observed in animals infected with the attenuated RV, but little or no inflammatory responses were found in mice infected with wt RV. Furthermore, attenuated RV induced the expression of the genes involved in the innate immune and antiviral responses, especially those related to the alpha/beta interferon (IFN-alpha/beta) signaling pathways and inflammatory chemokines. For the IFN-alpha/beta signaling pathways, many of the interferon regulatory genes, such as the signal transduction activation transducers and interferon regulatory factors, as well as the effector genes, for example, 2'-5'-oligoadenylate synthetase and myxovirus proteins, are highly induced in mice infected with attenuated RV. However, many of these genes were not up-regulated in mice infected with wt SHBRV. The data obtained by microarray analysis were confirmed by real-time PCR. Together, these data suggest that attenuated RV activates, while pathogenic RV evades, the host innate immune and antiviral responses.  相似文献   

20.
The innate immune system senses pathogens largely through signals initiated by a collection of phylogenetically related proteins known as "Toll-like receptors" (TLRs), of which 10 representatives are encoded in the human genome. Our understanding of the sensing role played by the TLRs began with the positional cloning of a spontaneous mutation (Lps(d)) in the gene encoding the mammalian lipopolysaccharide (LPS) receptor. Other key innate immunity proteins have been disclosed by germline mutagenesis, and are discussed in the present review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号