首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoclasts are multinucleated giant cells that originate from a monocyte/macrophage lineage, and are involved in the inflammatory bone destruction accompanied by periodontitis. Recent studies have shown that osteoclast precursors reside not only in the bone marrow, but also in the peripheral blood and spleen, though the precise characteristics of each precursor have not been analyzed. We hypothesized that the number of osteoclast precursors in those tissues may increase under pathological conditions and contribute to osteoclast formation in vivo in a mouse model. To test this hypothesis, we attempted to identify cell populations that possess osteoclast differentiation potential in the bone marrow, spleen, and blood by analyzing macrophage/monocyte-related cell surface markers such as CD11b, CD14, and colony-stimulating factor-1 receptor (c-Fms). In the bone marrow, the CD11b? cell population, but not the CD11b+ cell population, differentiated into osteoclasts in the presence of receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. On the other hand, in the spleen and blood, CD11b+ cells differentiated into osteoclasts. Interestingly, lipopolysaccharide (LPS) administration to the mice dramatically increased the proportion of CD11b+ c-Fms+ CD14+ cells, which differentiated into osteoclasts, in the bone marrow and spleen. These results suggest that LPS administration increases the proportion of a distinct cell population expressing CD11b+, c-Fms+, and CD14+ in the bone marrow and spleen. Thus, these cell populations are considered to contribute to the increase in osteoclast number during inflammatory bone destruction such as periodontitis.  相似文献   

2.
Conditional activation and inactivation of genes using the Cre/loxP recombination system is a powerful tool for the analysis of gene function and for tracking cell fate. Here we report a novel silent EGFP reporter mouse line generated by enhancer trap technology using embryonic stem (ES) cells. Following transfection with the silent EGFP reporter construct, positive ES cell clones were treated with Cre recombinase. These "activated clones" were then further selected on the basis of ubiquitous EGFP expression during in vitro differentiation. The parental "silent" clones were then used for generating mice. Upon Cre-mediated activation in ovo tissues tested from these mice express EGFP. Long-term, strong and sustainable expression of EGFP is observed in most myeloid and lymphoid cells. As shown by in vivo transplantation assays, the majority of hematopoietic stem cells (HSCs) and spleen colony-forming units (CFU-S) reside within the EGFP positive fraction. Most in vitro colony-forming units (CFU-Cs) isolated from bone marrow also express EGFP. Thus, these reporter mice are useful for the analysis of Cre-mediated recombination in HSCs and hematopoietic progenitor cells. This, in combination with the high accessibility of the loxP sites, makes these mice a valuable tool for testing cell/tissue-specific Cre-expressing mice. .  相似文献   

3.
Cre transgenic mice can be used to delete gene sequences flanked by loxP sites in specific somatic tissues. We have generated vavCre transgenic mice, which can be used to inactivate genes specifically in adult hematopoietic and endothelial cells. In these animals, a Cre transgene is expressed under control of murine vav gene regulatory elements. To assess their usefulness, vavCre transgenic mice were bred with R26R mice, which express a lacZ reporter gene only in cells where Cre-mediated recombination has occurred. VavCre/R26R double-heterozygous offspring were analyzed by beta-galactosidase histochemistry and flow cytometry. VavCre-mediated recombination occurred in most hematopoietic cells of all hematopoietic organs, including the hematopoietic progenitor-rich bone marrow. Recombination also occurred in most endothelial and germ cells, but only rarely in other cell types. The recombination in both hematopoietic and endothelial lineages may partly reflect their putative shared ontogeny and provides a unique tool for simultaneous pan-hematopoietic and endothelial mutagenesis.  相似文献   

4.
Hepatitis C virus (HCV) is not infectious in vivo exceptfor primates, so the proper HCV culture system andinbred animal model are difficult to set up, which has ham-pered detailed analysis on viral life cycle and pathogenesisof HCV infection [1,2]. Hepati…  相似文献   

5.
EDAG是在胚胎发育阶段造血干细胞特异性表达的基因.为了在早期造血组织细胞中实现相关基因的条件敲除,构建了含有早期造血组织特异性表达的EDAG启动子和Cre重组酶基因的转基因EDAG-Cre表达载体质粒.通过显微注射的方法将线性化的5.6kb的EDAG-Cre转基因片段导入小鼠受精卵细胞核,获得的新生小鼠经过PCR鉴定,常规方法培育传代.结果发现,共获得了6只阳性转基因首建鼠,其中4只已经建系并稳定传代.RT-PCR分析表明Cre重组酶基因在阳性转基因小鼠的骨髓、脾脏、胸腺、外周血以及胎肝等组织中均有表达,重组酶活性也在脾和骨髓中获得确认.EDAG-Cre重组酶转基因小鼠的建立,为研究早期造血组织以及造血干细胞特异性基因条件敲除小鼠模型的建立奠定了基础.  相似文献   

6.
The cytokine receptor activator of nuclear factor kappa B ligand (RANKL), encoded by the Tnfsf11 gene, is essential for osteoclastogenesis and previous studies have shown that deletion of the Tnfsf11 gene using a Dmp1-Cre transgene reduces osteoclast formation in cancellous bone by more than 70%. However, the Dmp1-Cre transgene used in those studies leads to recombination in osteocytes, osteoblasts, and lining cells making it unclear whether one or more of these cell types produce the RANKL required for osteoclast formation in cancellous bone. Because osteoblasts, osteocytes, and lining cells have distinct locations and functions, distinguishing which of these cell types are sources of RANKL is essential for understanding the orchestration of bone remodeling. To distinguish between these possibilities, we have now created transgenic mice expressing the Cre recombinase under the control of regulatory elements of the Sost gene, which is expressed in osteocytes but not osteoblasts or lining cells in murine bone. Activity of the Sost-Cre transgene in osteocytes, but not osteoblast or lining cells, was confirmed by crossing Sost-Cre transgenic mice with tdTomato and R26R Cre-reporter mice, which express tdTomato fluorescent protein or LacZ, respectively, only in cells expressing the Cre recombinase or their descendants. Deletion of the Tnfsf11 gene in Sost-Cre mice led to a threefold decrease in osteoclast number in cancellous bone and increased cancellous bone mass, mimicking the skeletal phenotype of mice in which the Tnfsf11 gene was deleted using the Dmp1-Cre transgene. These results demonstrate that osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling cancellous bone.  相似文献   

7.
Osteoclasts are essential cells for bone erosion in inflammatory arthritis and are derived from cells in the myeloid lineage. Recently, we reported that tumor necrosis factor-alpha (TNFalpha) increases the blood osteoclast precursor (OCP) numbers in arthritic patients and animals, which are reduced by anti-TNF therapy, implying that circulating OCPs may have an important role in the pathogenesis of erosive arthritis. The aim of this study is to investigate the mechanism by which TNFalpha induces this increase in OCP frequency. We found that TNFalpha stimulated cell division and conversion of CD11b+/Gr-1-/lo/c-Fms- to CD11b+/Gr-1-/lo/c-Fms+ cells, which was not blocked by neutralizing macrophage colony-stimulating factor (M-CSF) antibody. Ex vivo analysis of monocytes demonstrated the following: (i) blood CD11b+/Gr-1-/lo but not CD11b-/Gr-1- cells give rise to osteoclasts when they were cultured with receptor activator NF-kappaB ligand and M-CSF; and (ii) TNF-transgenic mice have a significant increase in blood CD11b+/Gr-1-/lo cells and bone marrow proliferating CD11b+/Gr-1-/lo cells. Administration of TNFalpha to wild type mice induced bone marrow CD11b+/Gr-1-/lo cell proliferation, which was associated with an increase in CD11b+/Gr-1-/lo OCPs in the circulation. Thus, TNFalpha directly stimulates bone marrow OCP genesis by enhancing c-Fms expression. This results in progenitor cell proliferation and differentiation in response to M-CSF, leading to an enlargement of the marrow OCP pool. Increased marrow OCPs subsequently egress to the circulation, forming a basis for elevated OCP frequency. Therefore, the first step of TNF-induced osteoclastogenesis is at the level of OCP genesis in the bone marrow, which represents another layer of regulation to control erosive disease.  相似文献   

8.
Induction of central deletional T cell tolerance by gene therapy   总被引:4,自引:0,他引:4  
Transgenic mice expressing an alloreactive TCR specific for the MHC class I Ag K(b) were used to examine the mechanism by which genetic engineering of bone marrow induces T cell tolerance. Reconstitution of lethally irradiated mice with bone marrow infected with retroviruses carrying the MHC class I gene H-2K(b) resulted in lifelong expression of K(b) on bone marrow-derived cells. While CD8 T cells expressing the transgenic TCR developed in control mice reconstituted with mock-transduced bone marrow, CD8 T cells expressing the transgenic TCR failed to develop in mice reconstituted with H-2K(b) transduced bone marrow. Analysis of transgene-expressing CD8 T cells in the thymus and periphery of reconstituted mice revealed that CD8 T cells expressing the transgenic TCR underwent negative selection in the thymus of mice reconstituted with K(b) transduced bone marrow. Negative selection induced by gene therapy resulted in tolerance to K(b). Thus, genetic engineering of bone marrow can be used to alter T cell education in the thymus by inducing negative selection.  相似文献   

9.
Summary: The versatility of the bacteriophage Cre/LoxP system is dependent on the availability of a spectrum of tissue-specific Cre transgenic mice to address a host of biological questions. In this paper, we report on the generation of an inducible Tie2Cre transgenic mouse line that facilitates gene targeting exclusively in endothelial cells. The temporal manner of recombination is feasible through the use of a Cre-estrogen receptor fusion protein ER(T2) and was, in practical terms, achieved by feeding the animals the estrogen antagonist tamoxifen orally for 5 weeks. High efficiency of recombination was found in the vast majority of endothelial cell populations examined, as monitored by an EGFP reporter mouse line. Critically, no EGFP expression was observed in any uninduced mice. This inducible Cre line will be a very beneficial asset to investigating the role of endothelial specific genes in the adult mouse and to induce transgenes in the endothelium in an extremely efficient manner. genesis 33:191-197, 2002.  相似文献   

10.
Zhu HZ  Wang W  Feng DM  Sai Y  Xue JL 《FEBS letters》2006,580(18):4346-4352
The success of Cre-mediated conditional gene targeting in liver of mice has until now depended on the generation of Cre recombinase transgenic mice or on viral-mediated transduction. Here, we sought to establish the feasibility of using hydrodynamic gene delivery of Cre recombinase into liver, using a ROSA26 EGFP mouse. The expression of EGFP and beta-galactosidase was exclusively detected in the liver of mice treated with hydrodynamic gene delivery of Cre recombinase, as assessed with fluorescence microscopy and X-Gal staining, respectively; Southern blotting also showed that Cre mediated recombination occurred specifically in the liver and not in other organs. The Cre mediated recombination reached about 61% of hepatocytes of mouse after repeated injection, as analyzed by flow cytometry. These results demonstrate that Cre recombinase can be transferred to the liver of mice through a simple hydrodynamic gene-delivery approach and can mediate efficient recombination in hepatocytes. Thus, hydrodynamic gene delivery of the Cre recombinase provides a valuable approach for Cre-loxP-mediated conditional gene modification in the liver of mice.  相似文献   

11.
Unmodified Cre recombinase crosses the membrane   总被引:5,自引:0,他引:5       下载免费PDF全文
Site-specific recombination in genetically modified cells can be achieved by the activity of Cre recombinase from bacteriophage P1. Commonly an expression vector encoding Cre is introduced into cells; however, this can lead to undesired side-effects. Therefore, we tested whether cell-permeable Cre fusion proteins can be directly used for lox-specific recombination in a cell line tailored to shift from red to green fluorescence after loxP-specific recombination. Comparison of purified recombinant Cre proteins with and without a heterologous ‘protein transduction domain’ surprisingly showed that the unmodified Cre recombinase already possesses an intrinsic ability to cross the membrane border. Addition of purified recombinant Cre enyzme to primary bone marrow cells isolated from transgenic C/EBPαfl/fl mice also led to excision of the ‘floxed’ C/EBPα gene, thus demonstrating its potential for in vivo applications. We conclude that Cre enyzme itself or its intrinsic membrane-permeating moiety are attractive tools for direct manipulation of mammalian cells.  相似文献   

12.
To study the physiological control of osteoclasts, the bone resorbing cells, we generated transgenic mice carrying the Cre recombinase gene driven by either the tartrate-resistant acid phosphatase (TRAP) or cathepsin K (Ctsk) promoters. TRAP-Cre and Ctsk-Cre transgenic mouse lines were characterized by breeding with LacZ ROSA 26 (R26R) reporter mice and immunohistochemistry for Cre recombinase. The Cre transgene was functional in all lines, with Cre-mediated recombination occurring primarily in the long bones, vertebrae, ribs, and calvaria. Histological analyses of the bones demonstrated that functional Cre protein was present in 1) osteoclasts (Ctsk-Cre); 2) osteoclasts, columnar proliferating, and hypertrophic chondrocytes (TRAP-Cre line 4); and 3) round proliferating chondrocytes (TRAP-Cre line 3). In conclusion, we generated transgenic mouse lines that will enable the deletion of floxed target genes in osteoclasts, which will be valuable tools for studying the regulation of osteoclast function.  相似文献   

13.
The Cre-loxP technology allows the introduction of somatic gene alterations in a tissue and/or cell type specific manner. The development of transgenes that target Cre expression to specific cell types is a critical component in this system. Here, we describe the generation and characterization of transgenic mouse lines expressing Cre recombinase under the control of the baboon alpha-chymase promoter, designated Chm:Cre, in order to direct Cre expression specifically to mouse mast cells. Chm:Cre expression was detected in mast cells in lung and colon tissue. Cre-mediated recombination in these mice identified a population of mature tissue resident mast cells using ROSA26R reporter mice. No Cre-expression and Cre-mediated recombination was induced in in vitro generated bone marrow derived mast cells or mast cells isolated from the peritoneal cavity indicating that Cre-expression under the control of the alpha-chymase promoter is solely activated in tissue resident mast cells. These Chm:Cre transgenic mice represent a useful tool to specifically inactivate genes of interest in mast cells of these tissues.  相似文献   

14.
Cell transplantation is a potential therapy for acquired or inherited liver diseases. Donor-derived hepatocytes (DDH) have been found in humans and mice after bone marrow transplantation (BMT) but with highly variable frequencies in different disease models. To test the effect of liver repopulation after BMT in inherited cholestatic liver diseases, spgp (sister of P-glycoprotein, or bile salt export pump, abcb11) knockout mice, a model for human progressive intrahepatic cholestasis type 2 with defects in excreting bile salts across the hepatocyte canalicular membrane, were transplanted with bone marrow cells from enhanced green fluorescent protein (EGFP) transgenic donor mice after lethal irradiation. One to 6 months later, scattered EGFP-positive DDHs with positive spgp staining were observed in the liver. These hepatocytes had been incorporated into hepatic plates and stained positively with hepatocyte-specific marker albumin. RT-PCR for the spgp gene revealed positive expression in the liver of sgsp knockout mice that had received the transplant. Bile acid analysis of bile samples showed that these mice also had higher levels of total biliary bile acid and taurocholic acid concentration than knockout mice without transplantation, indicating that BMT partially improved biliary bile acid secretion. Our results indicate that bone marrow cells could serve as a potential source for restoration of hepatic functions in chronic metabolic liver disease.  相似文献   

15.
The success of Cre-mediated conditional gene targeting depends on the specificity of Cre recombinase expression in Cre-transgenic mouse lines. As a tool to evaluate the specificity of Cre expression, we developed a reporter transgenic mouse strain that expresses enhanced green fluorescent protein (EGFP) upon Cre-mediated recombination. We demonstrate that the progeny resulting from a cross between this reporter strain and a transgenic strain expressing Cre in zygotes show ubiquitous EGFP fluorescence. This reporter strain should be useful to monitor the Cre expression directed by various promoters in transgenic mice, including mice in which Cre is expressed transiently during embryogenesis under a developmentally regulated promoter.  相似文献   

16.
CD11b is an alpha chain of the leukocyte beta(2)-integrin, Mac-1, which mediates binding and extravasation of leukocytes. Because this event is critical in atherosclerosis, we examined the role of CD11b in lesion formation. Atherosclerosis-susceptible, low density lipoprotein receptor-deficient (LDL-R(-/)-) mice were irradiated and repopulated with bone marrow cells from CD11b-deficient (CD11b(-/)-) mice. After 4 weeks, <2% of the peripheral blood leukocytes of the CD11b(-/)- bone marrow-transplanted LDL-R(-/)- mice expressed CD11b, whereas approximately 25% of the CD11b(+/)+ bone marrow-transplanted LDL-R(-/)- mice expressed CD11b. After consuming a high-fat diet for 16 weeks the mean lesion aortic valve area, cholesterol accumulation in the aorta, and the degree of intimal macrophage infiltration were similar in mice reconstituted with either CD11b(+)(/+) or CD11b(-/)- bone marrow cells.The studies confirm that CD11b expression of bone marrow-derived cells does not influence the development of atherosclerosis in hypercholesterolemic LDL-R(-/)- mice.  相似文献   

17.
Transgenic mice expressing the diphtheria toxin receptor (DTR) in specific cell types are key tools for functional studies in several biological systems. B6.FVB-Tg(Itgax-DTR/EGFP)57Lan/J (CD11c.DTR) and B6.Cg-Tg(Itgax-DTR/OVA/EGFP)1Gjh/Crl (CD11c.DOG) mice express the DTR in CD11c(+) cells, allowing conditional depletion of dendritic cells. We report that dendritic-cell depletion in these models caused polymorphonuclear neutrophil (PMN) release from the bone marrow, which caused chemokine-dependent neutrophilia after 6-24 h and increased bacterial clearance in a mouse pyelonephritis model. We present a transgenic mouse line, B6.Cg-Tg(Itgax-EGFP-CRE-DTR-LUC)2Gjh/Crl (CD11c.LuciDTR), which is unaffected by early neutrophilia. However, CD11c.LuciDTR and CD11c.DTR mice showed late neutrophilia 72 h after dendritic cell depletion, which was independent of PMN release and possibly resulted from increased granulopoiesis. Thus, the time point of dendritic cell depletion and the choice of DTR transgenic mouse line must be considered in experimental settings where neutrophils may be involved.  相似文献   

18.
The Cre/loxP recombination system can be used to circumvent many of the limitations of generalized gene ablation in mice. Here we present the development and characterization of transgenic mice in which Cre recombinase has been targeted to cells of the osteoblast lineage with 2.3 kb (Col 2.3-Cre) and 3.6 kb (Col 3.6-Cre) fragments of the rat Col1a1 promoter. Cre mRNA was detected in calvaria and long bone of adult Col 2.3-Cre and Col 3.6-Cre mice, as well as in tendon and skin of Col 3.6-Cre mice. To obtain a historical marking of the temporal and spatial pattern of Cre-mediated gene rearrangement, Col-Cre mice were bred with ROSA26 (R26R) mice in which Cre-mediated excision of a floxed cassette results in LacZ expression. In Col 2.3-Cre;R26R and Col 3.6-Cre;R26R progeny, calvarial and long bone osteoblasts showed intense beta-gal staining at embryonic day 18 and postnatal day 5. The spatial pattern of beta-gal staining was more restricted in bone and in bone marrow stromal cultures established from Col 2.3-Cre;R26R mice. Similar differences in the spatial patterns of expression were seen in transgenic bone carrying Col1a1-GFP visual reporters. Our data suggest that Col 2.3-Cre and Col 3.6-Cre transgenic mice may be useful for conditional gene targeting in vivo or for obtaining osteoblast populations for in vitro culture in which a gene of interest has been inactivated.  相似文献   

19.
Transgenic mice are an effective model to study gene function in vivo; however, position effects can complicate tissue-specific transgene analysis. To facilitate precise targeting of a transgenic construct into the mouse genome, we combined the Cre/lox and Flp/FRT recombination systems to allow for rapid transgene replacement and conditional transgene expression from the endogenous beta-actin locus. Flp/FRT recombination was used to rapidly exchange FRT-flanked transgene cassettes by recombinase-mediated cassette exchange in embryonic stem cells, while transgene expression can be activated in mice after Cre-mediated excision of a floxed STOP cassette. To validate our system, we analyzed the expression profile of an EGFP reporter gene after integration into the beta-actin locus and Cre-mediated excision of the floxed STOP cassette. Breeding of EGFP reporter mice with various Cre mouse lines resulted in the expected expression profiles, demonstrating the feasibility of the model to facilitate predictable and strong transgene expression in a spatially and temporally controlled manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号