首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin plays a neuroprotectant role in the brain and spinal cord during ischemia. However, studies have shown insulin to increase the sensitivity of cultured cortical cells to glutamate toxicity. The present study looked at the relationship between topically administered insulin (1 mIU insulin/ml and 100 mIU insulin/ml) during a four-vessel model of global ischemia and the accumulation of amino acids, especially glutamate, from the ischemic rat cerebral cortex. The lower dose of insulin was found to attenuate the release of excitotoxic and other amino acids from the cortex in ischemia/reperfusion. This may occur because insulin increases glucose availability to glial cells resulting in maintenance of glycolysis and ionic pumps that can reduce glutamate release and maintain uptake during ischemia/reperfusion. The higher dose of insulin, which significantly increased the amount of aspartate, glutamate, taurine, and GABA during reperfusion, may act to stimulate the amount of glycogen stored in astrocytes, reducing the availability of glucose for metabolic purposes.  相似文献   

2.
The content of γ-amino butyric acid (GABA) and of other water soluble amino acids in bovine brain synaptic vesicles was determined by a modified automated amino acid analysis method. Following subcellular fractionation, GABA, glutamate and aspartate were distributed largely in the supernatant fractions and in the upper layer of the sucrose gradient. Only 10–20% of the total content was associated with the vesicular fraction. On the other hand, the other water soluble amino acids, such as serine, glycine and alanine, were evenly distributed between cytoplasmic and particulate fractions in a similar pattern to that observed with cytoplasmic enzyme markers. The results may indicate specific association of GABA, glutamate and aspartate with low density particles or cytoplasmic components.  相似文献   

3.
The parietal cortical slices obtained from 8 week-old (young) and 78 week-old (middle-aged) male Wistar rats were incubated withd-[U-14C]glucose in oxygensaturated Gey's balanced salt solution. Subsequently, the radioactivities of liberated CO2 and glucose-derived amino acids (alanine, aspartate, GABA, glutamate and glutamine) obtained from the slices were measured. In the middle-aged rats as compared to the young rats, the amount of radioactivity of CO2 (P<0.01) and glutamate (P<0.05) showed a significant raduction with glutamine unchanged, while that of alanine (P<0.01), aspartate (P<0.05) and GABA (P<0.05) increased significantly. The results indicate that with advancing age the overall glucose oxidation in the cerebral cortex declines but the metabolic pathway to form amino acids is not uniformly suppressed. Therefore, the above characteristic glucose metabolism could be related to the development of heterogeneous enzyme activities associated with aging in the brain.  相似文献   

4.
Brain extracellular levels of glutamate, aspartate, GABA and glycine increase rapidly following the onset of ischemia, remain at an elevated level during the ischemia, and then decline over 20-30 min following reperfusion. The elevated levels of the excitotoxic amino acids, glutamate and aspartate, are thought to contribute to ischemia-evoked neuronal injury and death. Calcium-evoked exocytotic release appears to account for the initial (1-2 min) efflux of neurotransmitter-type amino acids following the onset of ischemia, with non-vesicular release responsible for much of the subsequent efflux of these and other amino acids, including taurine and phosphoethanolamine. Extracellular Ca(2+)-independent release is mediated, in part by Na(+)-dependent amino acid transporters in the plasma membrane operating in a reversed mode, and by the opening of swelling-induced chloride channels, which allow the passage of amino acids down their concentration gradients. Experiments on cultured neurons and astrocytes have suggested that it is the astrocytes which make the primary contribution to this amino acid efflux. Inhibition of phospholipase A(2) attenuates ischemia-evoked release of both amino and free fatty acids from the rat cerebral cortex indicating that this group of enzymes is involved in amino acid efflux, and also accounting for the consistent ischemia-evoked release of phosphoethanolamine. It is, therefore, possible that disruption of membrane integrity by phospholipases plays a role in amino acid release. Recovery of amino acid levels to preischemic levels requires their uptake by high affinity Na(+)-dependent transporters, operating in their normal mode, following restoration of energy metabolism, cell resting potentials and ionic gradients.  相似文献   

5.
The effects of glutamate, NMDA and quisqualate on carbachol-and norepinephrine-elicited formation of inositol phosphate (IP) were evaluated in slices prepared from the cerebral cortex of 3-and 24-month Sprague-Dawley rats. Glutamate, NMDA, and quisqualate antagonized the IP response to carbachol in a concentration-dependent fashion. This antagonism was more pronounced in aged than in young rats, both for glutamate (IC5O 0.114 and 0.210 mM) and NMDA (IC5O 0.0029 and 0.127 mM), but not for quisqualate. Glutamate (but not NMDA) also antagonized in a concentration-dependent fashion the IP response to norepinephrine, IC50s were 0.061 and 0.126 mM for aged and young rats, respectively; quisqualate had an inhibitory effect only at 1 mM concentration in the two age-groups, while in aged rats some stimulatory effect was present at 0.1 mM concentration. Glutamate, NMDA and quisqualate (1 mM) did not affect basal IP accumulation in either young or aged rats; quisqualate, however, at 0.1 mM concentration had some stimulatory effect, more pronounced in aged rats. This effect was probably responsible for the biphasic effect of quisqualate in this age-group. The most important finding consists of the demonstration of an age-related increase in the inhibitory effects of NMDA on carbachol-induced IP accumulation. This implies an altered modulation of cholinergic post-receptor mechanisms by glutamatergic mechanisms.  相似文献   

6.
7.
It has been observed that beta-hydroxy-alpha-amino acids are transformed into other amino acids, when heated in dilute solutions with phosphorous acid, phosphoric acid or their ammonium salts. It has been shown that as in the case of previously reported glycine-aldehyde reactions, glycine also reacts with acetone to give beta-hydroxyvaline under prebiologically feasible conditions. It is suggested, therefore, that the formation of beta-hydroxy-alpha-amino acids and their transformation to other amino acids may have been a pathway for the synthesis of amino acids under primitive earth conditions.  相似文献   

8.
The effect of various amino acids and oxoacids on the accumulation of PAH in rat kidney cortex slices was determined. The following compounds were found to increase the PAH tissue to medium ratio (T/MPAH): a) dicarboxylic acids: glutarate, 2-oxoglutarate and oxaloacetate, b) amino acids: glutamate, isoleucine, leucine, valine, methionine, tryptophane, histidine, threonine and glycine, c) monocarboxylates: hydroxymethionine, oxovaline, oxoisoleucine and oxoleucine. There were no marked concentration/effect differences to glycine, glutamate, glutarate and oxovaline. Ouabain inhibited T/MPAH only slightly, but abolished its increase by pyruvate, 2-oxoglutarate and histidine. Oxygen hyposaturation abolished the T/MPAH increase caused by 2-oxoglutarate, pyruvate, glutamate and histidine. It is concluded that various substrates stimulating the organic anion transport system (OATS) do so namely by improving the energy supply, although the direct participation of dicarboxylates in OATS could be of relevance namely in short-lasting variations.  相似文献   

9.
10.
The ionic mechanisms underlying the action of excitatory amino acids were investigated in the rat motor cortex. Ion-selective microelectrodes were attached to micropipettes such that their tips were very close and local changes in extracellular concentration of sodium, calcium, and potassium ions elicited through ionophoretic applications of glutamate (Glu) and of its agonists N-methyl-D-aspartate (NMDA), quisqualate (Quis), and kainate (Ka) were measured. These agents produced moderate increases in [K+]o (up to 13 mM) but, in contrast, substantial tetrodotoxin-insensitive decreases in [Na+]o (maximally of 60 mM). NMDA-induced sodium responses could be blocked by manganese, while the Quis- and Ka-induced responses were not. Quis and Ka produced increases in [Ca2+]o or biphasic responses while NMDA, even with small doses, induced each time drastic decreases in [Ca2+]o (maximally of 1.15 mM), which could be attenuated or blocked by manganese but not by organic calcium channel blockers. NMDA responses could be abolished by reduced doses of 2-amino-phosphonovalerate. The largest Glu- and NMDA-induced calcium responses were observed in the superficial cortical layers, but such maxima disappeared after selective degeneration of pyramidal tract neurons. All amino acids produced sizeable reductions in the extracellular space volume. The following can be concluded. (i) All the excitatory amino acids tested induce an increased permeability to sodium and potassium ions. (ii) In addition, the NMDA-operated channels have specifically a large permeability for calcium, although calcium ions contribute only by less than 10% to the NMDA-induced inward currents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
It has been observed that -hydroxy--amino acids are transformed into other amino acids, when heated in dilute solutions with phosphorous acid, phosphoric acid or their ammonium salts. It has been shown that as in the case of previously reported glycine-aldehyde reactions, glycine also reacts with acetone to give -hydroxyvaline under prebiologically feasible conditions. It is suggested, therefore, that the formation of -hydroxy--amino acids and their transformation to other amino acids may have been a pathway for the synthesis of amino acids under primitive earth conditions.  相似文献   

13.
14.
A rat four vessel occlusion model was utilized to examine the effects of ischemia/reperfusion on cortical window superfusate levels of amino acids, glucose, and lactate. Superfusate aspartate, glutamate, phosphoethanolamine, taurine, and GABA were significantly elevated by cerebral ischemia, then declined during reperfusion. Other amino acids were affected to a lesser degree. Superfusate lactate rose slightly during the initial ischemic period, declined during continued cerebral ischemia and then was greatly elevated during reperfusion. Superfusate glucose levels declined to near zero levels during ischemia and then rebounded beyond basal levels during the reperfusion period. Inhibition of neuronal lactate uptake with alpha-cyano-4-hydroxycinnamate dramatically elevated superfusate lactate levels, enhanced the ischemia/reperfusion evoked release of aspartate but reduced glutamine levels. Topical application of an alternative metabolic fuel, glutamine, had a dose dependent effect. Glutamine (1 mM) elevated basal superfusate glucose levels, diminished the decline in glucose during ischemia, and accelerated its recovery during reperfusion. Lactate levels were elevated during ischemia and reperfusion. These effects were not evident at 5 mM glutamine. At both concentrations, glutamine significantly elevated the superfusate levels of glutamate. Topical application of sodium pyruvate (20 mM) significantly attenuated the decline in superfusate glucose during ischemia and enhanced the levels of both glucose and lactate during reperfusion. However, it had little effect on the ischemia-evoked accumulation of amino acids. Topical application of glucose (450 mg/dL) significantly elevated basal superfusate levels of lactate, which continued to be elevated during both ischemia and reperfusion. The ischemia-evoked accumulations of aspartate, glutamate, taurine and GABA were all significantly depressed by glucose, while phosphoethanolamine levels were elevated. These results support the role of lactate in neuronal metabolism during ischemia/reperfusion. Both glucose and glutamine were also used as energy substrates. In contrast, sodium pyruvate does not appear to be as effectively utilized by the ischemic/reperfused rat brain since it did not reduce ischemia-evoked amino acid efflux.  相似文献   

15.
Vesicles from guinea pig cerebral cortex prepared by homogenization in Krebs-Ringer buffer contained adenylate cyclase activity which was stimulated by the acidic amino acids, cysteine sulfinic and glutamic acids, and by norepinephrine as well as by an alkaloid, veratridine. With these vesicular preparations the concentrations of amino acids required for half-maximal stimulation were about 30 muM, only about 1/30 those necessary with intact-cell preparations. Nearly additive effects were observed when either of the active amino acids was combined with norepinephrine at their optimal concentrations.  相似文献   

16.
17.
Release of endogenous amino acids labelled via D-[U-14C]glucose was compared with that of several exogenous labelled amino acids using slices of guinea pig cerebral cortex. Electrical field stimulation evoked a selective release of endogenous [14C]glutamate, [14C]aspartate, and gamma-amino[14C]butyrate (14C-labelled GABA). The selectivity of release correlated well with 14C incorporation into endogenous amino acids. Calculations of the fraction of the tissue radioactivity released indicated that the selectivity was not an artifact due to differential incorporation. Because glucose in mammalian brain is metabolized almost entirely by the so-called 'large compartment', it is tentatively concluded that the releasable 'transmitter pool' of glutamate, aspartate, and GABA is located in this 'large compartment'.  相似文献   

18.
19.
The effects of Li+ on carbachol-stimulated phosphoinositide metabolism were examined in rat cerebral-cortex slices labelled with myo-[2-3H]inositol. The muscarinic agonist carbachol evoked an enhanced steady-state accumulation of [3H]inositol monophosphate ([3H]InsP1), [3H]inositol bisphosphate ([3H]InsP2), [3H]inositol 1,3,4-trisphosphate ([3H]Ins(1,3,4)P3), [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) and [3H]inositol tetrakisphosphate ([3H]InsP4). Li+ (5 mM), after a 10 min lag, severely attenuated carbachol-stimulated [3H]InsP4 accumulation while simultaneously potentiating accumulation of both [3H]InsP1 and [3H]InsP2 and, at least initially, of [3H]Ins(1,3,4)P3. These data are consistent with inhibition of inositol mono-, bis- and 1,3,4-tris-phosphate phosphatases to different degrees by Li+ in brain, but are not considered to be completely accounted for in this way. Potential direct and indirect mechanisms of the inhibitory action of Li+ on [3H]InsP4 accumulation are considered. The present results stress the complex action of Li+ on cerebral inositol metabolism and indicate that more complex mechanisms than are yet evident may regulate this process.  相似文献   

20.
gamma-glutamyl Transferase fron Sheep brain cortex capillaries was studied from the point of view of transport of aminoacids across blood brain barrier. Excess substrate inhibition was competitive and observed both with donor (glutathione) and various acceptors (methionine, alanine, tryptophan) but not with arginine. Excess glutathione inhibition of transfer reaction is concomitant with an increase of total reaction (transfer + hydrolysis + autotranspeptidation). With regard to aminoacids, the greater the K'm the stronger the inhibition. This inhibition is the result of formation of a dead complex. Lineweaver-Burk plots 1/v versus 1/[acceptor] give straight lines meeting at the same point, whereas 1/v verus 1/[donor] plots are roughly parallel for high aminoacid concentrations and become secant for the low ones. Replots of slopes vs. 1/[acceptor] are not linear: the lower the aminoacid affinity the more pronounced the slope replot curvature. Thus kinetic patterns are consistent with a branched ping-pong mechanism including a ternary complex (Enzyme-acceptor-H2O) at high or low relative concentration, which balances the two branches. The estimated value of kinetic parameters does not support the hypothesis of major implication of the enzyme in brain uptake of aminoacids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号