首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microalgae are considered as the most promising renewable feedstock for biofuel production and biorefineries, due to their advantages of fast growth, efficient carbon dioxide fixation, not competing for arable lands and potable water, and potentially accumulating high amounts of lipids and carbohydrates. Since carbohydrates in microalgae biomass are mainly cellulose in the cell wall and starch in the plastids without lignin and low hemicelluloses contents, they can be readily converted into fermentable sugars. However, to date there are very few studies focusing on the use of microalgae-based carbohydrates for biofuel production, which requires more understanding and knowledge to support the technical feasibility of this next-generation feedstock. This review article elucidates comprehensive information on the characteristics and metabolism of main fermentable microalgal carbohydrates (e.g., starch and cellulose), as well as the key factors and challenges that should be addressed during production and saccharification of microalgal carbohydrates. Furthermore, developments on the utilization of microalgae-based feedstock in producing liquid and gaseous biofuels are summarized. The objective of this article is to provide useful knowledge and information with regard to biochemistry, bioprocess engineering, and commercial applications to assist in the viable technology development of for biofuels generation from microalgae-based carbohydrates.  相似文献   

2.
Microalgae have the ability to mitigate CO2 emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.  相似文献   

3.
Microalgal biomass as feedstock for biofuel production is an attracting alternative to terrestrial plant utilization for biofuels production. However, today the microalgal cultivation systems for energy production purposes seem not yet to be economically feasible. Microalgae, though cultivated under stress conditions, such as nutrient starvation, high salinity, high temperature etc. accumulate considerable amounts (up to 60–65% of dry weight) of lipids or carbohydrates along with several secondary metabolites. Especially some of the latter are valuable compounds with an enormous range of industrial applications. The simultaneous production of lipids or carbohydrates for biofuel production and of secondary metabolites in a biorefinery concept might allow the microalgal production to be economically feasible. This paper aims to provide a review on the available literature about the cultivation of microalgae for the accumulation of high-value compounds along with lipids or carbohydrates focusing on stress cultivation conditions.  相似文献   

4.
There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.  相似文献   

5.
Despite receiving increasing attention during the last few decades, the production of microalgal biofuels is not yet sufficiently cost-effective to compete with that of petroleum-based conventional fuels. Among the steps required for the production of microalgal biofuels, the harvest of the microalgal biomass and the extraction of lipids from microalgae are two of the most expensive. In this review article, we surveyed a substantial amount of previous work in microalgal harvesting and lipid extraction to highlight recent progress in these areas. We also discuss new developments in the biodiesel conversion technology due to the importance of the connectivity of this step with the lipid extraction process. Furthermore, we propose possible future directions for technological or process improvements that will directly affect the final production costs of microalgal biomass-based biofuels.  相似文献   

6.
The high content of lipids in microalgae (>60% w/w in some species) and of carbohydrates in seaweed (up to 75%) have promoted intensive research towards valorisation of algal components for the production of biofuels. However, the exploitation of the carbohydrate fraction to produce a range of chemicals and chemical intermediates with established markets is still limited. These include organic acids (e.g. succinic and lactic acid), alcohols other than bioethanol (e.g. butanol), and biomaterials (e.g. polyhydroxyalkanoates). This review highlights current and potential applications of the marine algal carbohydrate fractions as major C-source for microbial production of biomaterials and building blocks.  相似文献   

7.
《Biotechnology advances》2017,35(8):1049-1059
Biobutanol is gaining more attention as a potential alternative to ethanol, and the demand for fermentative biobutanol production has renewed interest. The main challenge faced in biobutanol production is the availability of feedstock. Using conventional agricultural biomass as feedstock is controversial and less efficient, while microalgae, the third generation feedstock, are considered promising feedstock for biobutanol production due to their high growth rate and high carbohydrates content. This review is primarily focused on biobutanol production by using carbohydrate-rich microalgal feedstock. Key technologies and challenges involved in producing butanol from microalgae are discussed in detail and future directions are also presented.  相似文献   

8.
Microalgal production technologies are seen as increasingly attractive for bioenergy production to improve fuel security and reduce CO(2) emissions. Photosynthetically derived fuels are a renewable, potentially carbon-neutral and scalable alternative reserve. Microalgae have particular promise because they can be produced on non-arable land and utilize saline and wastewater streams. Furthermore, emerging microalgal technologies can be used to produce a range of products such as biofuels, protein-rich animal feeds, chemical feedstocks (e.g. bioplastic precursors) and higher-value products. This review focuses on the selection, breeding and engineering of microalgae for improved biomass and biofuel conversion efficiencies.  相似文献   

9.
Although production of biodiesels from microalgae is proved to be technically feasible, a commercially viable system has yet to emerge. High-cell-density fermentation of microalgae can be coupled with photoautotrophic cultivation to produce oils. In this study, by optimizing culturing conditions and employing a sophisticated substrate feed control strategy, ultrahigh-cell-density of 286 and 283.5 g/L was achieved for the unicellular alga Scenedesmus acuminatus grown in 7.5-L bench-scale and 1,000-L pilot-scale fermenters, respectively. The outdoor scale-up experiments indicated that heterotrophically grown S. acuminatus cells are more productive in terms of both biomass and lipid accumulation when they are inoculated in photobioreactors for lipid production as compared to the cells originally grown under photoautotrophic conditions. Technoeconomic analysis based on the pilot-scale data indicated that the cost of heterotrophic cultivation of microalgae for biomass production is comparable with that of the open-pond system and much lower than that of tubular PBR, if the biomass yield was higher than 200 g/L. This study demonstrated the economic viability of heterotrophic cultivation on large-scale microalgal inocula production, but ultrahigh-productivity fermentation is a prerequisite. Moreover, the advantages of the combined heterotrophic and photoautotrophic cultivation of microalgae for biofuels production were also verified in the pilot-scale.  相似文献   

10.
Biofuels from microalgae is now a hot issue of great potential. However, achieving high starch productivity with photoautotrophic microalgae is still challenging. A feasible approach to enhance the growth and target product of microalgae is to conduct mixotrophic cultivation. The appropriate acetate addition combined with CO2 supply as dual carbon sources (i.e., mixotrophic cultivation) could enhance the cell growth of some microalgae species, but the effect of acetate‐mediated mixotrophic culture mode on carbohydrate accumulation in microalgae remains unclear. Moreover, there is still lack of the information concerning how to increase the productivity of carbohydrates from microalgae under acetate‐amended mixotrophic cultivation and how to optimize the engineering strategies to achieve the goal. This study was undertaken to develop an optimal acetate‐contained mixotrophic cultivation system coupled with effective operation strategies to markedly improve the carbohydrate productivity of Chlorella sorokiniana NIES‐2168. The optimal carbohydrate productivity of 695 mg/L/d was obtained, which is the highest value ever reported. The monosaccharide in the accumulated carbohydrates is mainly glucose (i.e., 85–90%), which is very suitable for bio‐alcohols fermentation. Hence, by applying the optimal process developed in this study, C. sorokiniana NIES‐2168 has a high potential to serve as a feedstock for subsequent biofuels conversion.  相似文献   

11.
Concerns regarding the depletion of the world's reserves of oil and global climate change have promoted an intensification of research and development toward the production of biofuels and other alternative sources of energy during the last years. There is currently much interest in developing the technology for third-generation biofuels from microalgal biomass mainly because of its potential for high yields and reduced land use changes in comparison with biofuels derived from plant feedstocks. Regardless of the nature of the feedstock, the use of fertilizers, especially nitrogen, entails a potential economic and environmental drawback for the sustainability of biofuel production. In this work, we have studied the possibility of nitrogen biofertilization by diazotrophic bacteria applied to cultured microalgae as a promising feedstock for next-generation biofuels. We have obtained an Azotobacter vinelandii mutant strain that accumulates several times more ammonium in culture medium than wild-type cells. The ammonium excreted by the mutant cells is bioavailable to promote the growth of nondiazotrophic microalgae. Moreover, this synthetic symbiosis was able to produce an oil-rich microalgal biomass using both carbon and nitrogen from the air. This work provides a proof of concept that artificial symbiosis may be considered an alternative strategy for the low-N-intensive cultivation of microalgae for the sustainable production of next-generation biofuels and other bioproducts.  相似文献   

12.
微藻细胞可以积累大量油脂、蛋白质、多糖、色素、不饱和脂肪酸等物质,在能源、食品、饵料、保健品及药品等行业有巨大的应用价值。然而,微藻在传统光自养模式下很难实现高密度培养来大量生产这些重要的物质,进而限制了微藻的实际应用。相反,微藻在异养模式下生长速度快、生物质浓度高,可以短时间内获得大量微藻生物质。因此,异养高密度培养微藻具备大规模、高效率培养微藻生产目标产物的巨大潜力。阐述微藻异养培养的优缺点及相应技术难点的解决思路、影响微藻异养生长及目标产物积累的主要营养因子和环境因子、微藻异养高密度培养的方式及微藻异养高密度培养的当前发展水平。结合文献报道分析微藻异养高密度培养的四个具有极大发展潜力的发展方向,以期更好地利用异养模式来高效率、低成本培养微藻生产大量目标产物,满足上述多个行业对微藻原材料的巨大需求,从而加速微藻产业的发展。  相似文献   

13.
Microalgae are a promising new source of biomass for the production of third generation biofuels but, so far, the majority of microalgal biomass has been used for high-value applications. New low-cost technologies are needed to make the production and processing of microalgae economically feasible for low-value applications. A major challenge lies in the harvesting of microalgae, which requires a cost-efficient separation technology. Flocculation, especially bioflocculation, is an attractive low-cost separation technology. Various new bioflocculation strategies have been claimed to generate major advances in cost-efficient harvesting. Here, we review the recent advances in bioflocculation based on algal–bacterial, algal–fungal, or algal–algal interactions within the framework of microalgae biomass harvesting for biofuel production. We also discuss recent advances using infochemicals and genetic engineering for the induction of bioflocculation.  相似文献   

14.
Microalgae have been exploited for biofuel generation in the current era due to its enormous energy content, fast cellular growth rate, inexpensive culture approaches, accumulation of inorganic compounds, and CO2 sequestration. Currently, research is ongoing towards the advancement of the microalgae cultivation parameters to enhance the biomass yield. The main objective of this study was to delineate the progress of physicochemical parameters for microalgae cultivation such as gaseous transfer, mixing, light demand, temperature, pH, nutrients and the culture period. This review demonstrates the latest research trends on mass transfer coefficient of different microalgae culturing reactors, gas velocity optimization, light intensity, retention time, and radiance effects on microalgae cellular growth, temperature impact on chlorophyll production, and nutrient dosage ratios for cellulosic metabolism to avoid nutrient deprivation. Besides that, cultivation approaches for microalgae associated with mathematical modeling for different parameters, mechanisms of microalgal growth rate and doubling time have been elaborately described. Along with that, this review also documents potential lipid-carbohydrate-protein enriched microalgae candidates for biofuel, biomass productivity, and different cultivation conditions including open-pond cultivation, closed-loop cultivation, and photobioreactors. Various photobioreactor types, the microalgae strain, productivity, advantages, and limitations were tabulated. In line with microalgae cultivation, this study also outlines in detail numerous biofuels from microalgae.  相似文献   

15.
Using renewable microalgal biomass as active feedstocks for biofuels and bioproducts is explored to substitute petroleum-based fuels and chemicals. In the last few years, the importance of microalgae biomass has been realized as a renewable feedstock due to several positive attributes associated with it. Biorefinery via anaerobic digestion (AD) of microalgal biomass is a promising and sustainable method to produce value-added chemicals, edible products and biofuels. Microalgal biomass pretreatment is a significant process to enhance methane production by AD. Findings on the AD microbial community’s variety and organization can give novel in turn on digester steadiness and presentation. This review presents a vital study of the existing facts on the AD microbial community and AD production. Co-digestion of microalgal biomass with different co-substrates was used in AD to enhance biogas production, and the process was economically viable with improved biodegradability. Microcystins, which are produced by toxic cyanobacterial blooms, create a severe hazard to environmental health. Anaerobic biodegradation is an effective method to degrade the microcystins and convert into nontoxic products. However, for the cost-effective conversion of biomass to energy and other beneficial byproducts, additional highly developed research is still required for large-scale AD of microalgal biomass.  相似文献   

16.
Microscopic algae and cyanobacteria are excellent sources of numerous compounds, from raw biomass rich in proteins, oils, and antioxidants to valuable secondary metabolites with potential medical use. In the former Czechoslovakia, microalgal biotechnology developed rapidly in the 1960s with the main aim of providing industrial, high-yield sources of algal biomass. Unique cultivation techniques that are still in use were successfully developed and tested. Gradually, the focus changed from bulk production to more sophisticated use of microalgae, including production of bioactive compounds. Along the way, better understanding of the physiology and cell biology of productive microalgal strains was achieved. Currently, microalgae are in the focus again, mostly as possible sources of bioactive compounds and next-generation biofuels for the 21st century.  相似文献   

17.
A new methodology of biological treatment and conversion of farm waste (manure and wash water) with the use of intensively cultivated phototrophic microorganisms (microalgae) is reviewed. Criteria for selection of microalgae and peculiarities of their intensive cultivation for efficient removal of biogenic elements from and destruction of the organic components of the wastes as well as the possibilities of cost-effective utilization of the resulting microalgal biomass are considered. Advantages and drawbacks of the new methodology are compared with those of conventional anaerobic techniques. Special attention is paid to the integrated technologies combining the aerobic conversion methods with microalgal post-treatment.  相似文献   

18.
Biofuel-bioenergy production has generated intensive interest due to increased concern regarding limited petroleum-based fuel supplies and their contribution to atmospheric CO2 levels. Biofuel research is not just a matter of finding the right type of biomass and converting it to fuel, but it must also be economically sustainable on large-scale. Several aspects of cyanobacteria and microalgae such as oxygenic photosynthesis, high per-acre productivity, non-food based feedstock, growth on non-productive and non-arable land, utilization of wide variety of water sources (fresh, brackish, seawater and wastewater) and production of valuable co-products along with biofuels have combined to capture the interest of researchers and entrepreneurs. Currently, worldwide biofuels mainly in focus include biohydrogen, bioethanol, biodiesel and biogas. This review focuses on cultivation and harvesting of cyanobacteria and microalgae, possible biofuels and co-products, challenges for cyanobacterial and microalgal biofuels and the approaches of genetic engineering and modifications to increase biofuel production.  相似文献   

19.
Tequila vinasses (TVs) generated during Tequila production are brown liquid residues rich in nutrients. The nutrient content of agro-industrial effluents represents an excellent resource to support low-cost biomass production of microalgae; nonetheless, it is crucial to select the suitable microalgal strain to attain the highest biomass production in each residue used. In this study, biomass production, CO2 fixation from biogas, and cell compound accumulation by Chlorella vulgaris U162, Chlorella sp., Scenedesmus obliquus U169, and Scenedesmus sp. using biodigested and filtered TVs as culture medium were evaluated and compared with the conventional microalgal culture media, C30, BG-11, Bold 3N, and Bristol. The four microalgae evaluated attained the highest biomass production and CO2 fixation rate cultured in both residues, accumulating mainly carbohydrates and proteins although the most appropriate microalga to be cultured in TVs was Chlorella sp., recording 2.30 g L?1. Moreover, the nutrient ratio of filtered TVs was ideal to support biomass production while biodigested TVs need to be supplemented with nitrogen. Overall, these results demonstrated that tequila vinasses are an excellent resource to support high and quick biomass production of microalgae, which can be used to obtain biofuels as ethanol, biogas, and supplement food depicting an extra benefit during the appropriate disposal of this residue.  相似文献   

20.
Oleaginous microalgae are considered as promising sources of biofuels and biochemicals due to their high lipid content and other high-value components such as pigments, carbohydrate and protein. This study aimed to develop an efficient biorefinery process for utilizing all of the components in oleaginous microalgae. Acetone extraction was used to recover microalgal pigments prior to processes for the other products. Microalgal lipids were converted into biodiesel (fatty acid methyl ester, FAME) through a conventional two-step process of lipid extraction followed by transesterification, and alternatively a one-step direct transesterification. The comparable FAME yields from both methods indicate the effectiveness of direct transesterification. The operating parameters for direct transesterification were optimized through response surface methodology (RSM). The maximum FAME yield of 256 g/kg-biomass was achieved when using chloroform:methanol as co-solvents for extracting and reacting reagents at 1.35:1 volumetric ratio, 70 °C reaction temperature, and 120 min reaction time. The carbohydrate content in lipid-free microalgal biomass residues (LMBRs) was subsequently acid hydrolyzed into sugars under optimized conditions from RSM. The maximum sugar yield obtained was 44.8 g/kg-LMBRs and the protein residues were recovered after hydrolysis. This biorefinery process may contribute greatly to zero-waste industrialization of microalgae based biofuels and biochemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号