首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We measured temperature preferences of 12 species of hylid frogs (Litoria and Cyclorana) from northern Australia in a laboratory thermal gradient. These species represented a range of ecological habitat use (aquatic, terrestrial, arboreal), adult body size (0.5-60 g), and cutaneous resistance to water loss (Rc=0.6-63.1 s cm-1). We found significant differences among species in selected skin temperature and gradient temperature but not in the variances of these measures (an index of precision of temperature selection). The species' differences correlated significantly with cutaneous resistance to water loss, with more-resistant frogs selecting higher skin and substrate temperatures in the thermal gradient, even after phylogenetic relationships are taken into account. Because cutaneous resistance to water loss also correlates with ecological habit (arboreal>terrestrial>aquatic), we suggest that their higher resistance to water loss allows arboreal and terrestrial species better ability to tolerate high temperatures, where growth or locomotory speed may be higher, without the associated risk of desiccation.  相似文献   

2.
Although the skin of most amphibians measured to date offers no resistance to evaporative water loss (EWL), some species, primarily arboreal frogs, produce skin secretions that increase resistance to EWL. At high air temperatures, it may be advantageous for amphibians to increase EWL as a means to decrease body temperature. In Australian hylid frogs, most species do not decrease their resistance at high air temperature, but some species with moderate resistance (at moderate air temperatures) gradually decrease resistance with increasing air temperature, and some species with high resistance (at moderate air temperatures) abruptly decrease resistance at high air temperatures. Lower skin resistance at high air temperatures decreases the time to desiccation, but the lower body temperatures allow the species to avoid their critical thermal maximum (CT(Max)) body temperatures. The body temperatures of species with low to moderate resistances to EWL that do not adjust resistance at high air temperatures do not warm to their CT(Max), although for some species, this is because they have high CT(Max) values. As has been reported previously for resistance to EWL generally, the response pattern of change of EWL at high air temperatures has apparently evolved independently among Australian hylids. The mechanisms involved in causing resistance and changes in resistance are unknown.  相似文献   

3.
Although the skin of most amphibians measured to date offers no resistance to evaporative water loss (EWL), some species, primarily arboreal frogs, produce skin secretions that increase resistance to EWL. At high air temperatures, it may be advantageous for amphibians to increase EWL as a means to decrease body temperature. In Australian hylid frogs, most species do not decrease their resistance at high air temperature, but some species with moderate resistance (at moderate air temperatures) gradually decrease resistance with increasing air temperature, and some species with high resistance (at moderate air temperatures) abruptly decrease resistance at high air temperatures. Lower skin resistance at high air temperatures decreases the time to desiccation, but the lower body temperatures allow the species to avoid their critical thermal maximum (CT(Max)) body temperatures. The body temperatures of species with low to moderate resistances to EWL that do not adjust resistance at high air temperatures do not warm to their CT(Max), although for some species, this is because they have high CT(Max) values. As has been reported previously for resistance to EWL generally, the response pattern of change of EWL at high air temperatures has apparently evolved independently among Australian hylids. The mechanisms involved in causing resistance and changes in resistance are unknown.  相似文献   

4.
A kinetic analysis of evaporative water loss barriers   总被引:1,自引:0,他引:1  
A simple kinetic analysis of evaporation solves a number of current theoretical conflicts and provides a much needed insight into waterproofing barriers. Although the saturation deficit law approximates the gradient across a free water surface, it is not necessarily applicable when a barrier is present. Any gaseous diffusion barrier reduces water loss by increasing condensation at the interface, whereas a hydrophobic barrier reduces both vaporization and condensation. Hydrophilic barriers may decrease vaporization without inhibiting condensation but are ineffective when fully hydrated. A general model is derived for steady state water loss across a biological barrier consisting of a mosaic of hydrophilic and hydrophobic bonds. These principles are applied to organisms inhabiting temporally heterogeneous environments.  相似文献   

5.
6.
7.
The effects of thermal conditions on the components of the physiological traits, energy metabolism and evaporative water loss, were studied in two species of Pristidactylus lizards, from different thermal habitats, forest and scrubland areas. The compared species had similar average daily metabolic rates, pulmo-cutaneous and pulmonary evaporative water loss. They differ in the daily distribution of energy expenditure, and in the voluntary aerobic scope. Similarities in most of the studied variables, may reflect either functional or historical constraints on these variables.  相似文献   

8.
Abstract Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.  相似文献   

9.
Ariagno, Ronald L., Steven F. Glotzbach, Roger B. Baldwin,David M. Rector, Susan M. Bowley, and Robert J. Moffat.Dew-point hygrometry system for measurement of evaporative waterloss in infants. J. Appl. Physiol.82(3): 1008-1017, 1997.Evaporation of water from the skin is animportant mechanism in thermal homeostasis. Resistance hygrometry, inwhich the water vapor pressure gradient above the skin surface iscalculated, has been the measurement method of choice in the majorityof pediatric investigations. However, resistance hygrometry isinfluenced by changes in ambient conditions such as relative humidity,surface temperature, and convection currents. We have developed aventilated capsule method that minimized these potential sources ofmeasurement error and that allowed second-by-second, long-term,continuous measurements of evaporative water loss in sleeping infants.Air with a controlled reference humidity (dew-point temperature = 0°C) is delivered to a small, lightweight skin capsule and mixedwith the vapor on the surface of the skin. The dew point of theresulting mixture is measured by using a chilled mirror dew-pointhygrometer. The system indicates leaks, is mobile, and is accuratewithin 2%, as determined by gravimetric calibration. Examples from arecording of a 13-wk-old full-term infant obtained by using the systemgive evaporative water loss rates of ~0.02mgH2O · cm2 · min1for normothermic baseline conditions and values up to 0.4 mgH2O · cm2 ·min1 when the subject wasbeing warmed. The system is effective for clinical investigations thatrequire dynamic measurements of water loss.

  相似文献   

10.
11.
12.
13.
Hummingbirds represent an end point for small body size and water flux in vertebrates. We explored the role evaporative water loss (EWL) plays in management of their large water pool and its use in dissipating metabolic heat. We measured respiratory evaporative water loss (REWL) in hovering hummingbirds in the field (6 species) and over a range of speeds in a wind tunnel (1 species) using an open-circuit mask respirometry system. Hovering REWL during the active period was positively correlated with operative temperature (Te) likely due to some combination of an increase in the vapor-pressure deficit, increase in lung ventilation rate, and reduced importance of dry heat transfer at higher Te. In rufous hummingbirds (Selasphorus rufus; 3.3 g) REWL during forward flight at 6 and 10 m/s was less than half the value for hovering. The proportion of total dissipated heat (TDH) accounted for by REWL during hovering at Te > 40 °C was < 40% in most species. During forward flight in S. rufus the proportion of TDH accounted for by REWL was ~ 35% less than for hovering. REWL in hummingbirds is a relatively small component of the water budget compared with other bird species (< 20%) so cutaneous evaporative water loss and dry heat transfer must contribute significantly to thermal balance in hummingbirds.  相似文献   

14.
15.
Species with sexual dimorphism provide powerful study systems for understanding adaptation to different lifestyles as it removes the potentially confounding effects of phylogeny. Thynnine wasps have a stark sexual dimorphism where males fly patrols in search of the flightless, predominantly fossorial females with which to mate. Using flow-through respirometry, we tested the prediction that the highly active males of the thynnine wasp Zaspilothynnus nigripes would have high metabolic rates (VCO2) relative to females. Further, the females, which spend more time underground, were predicted to exhibit lower evaporative water loss (EWL) than males. Metabolic rate of both sexes increased exponentially between 12 and 28 °C. As predicted, males had higher mass-corrected VCO2 at identical temperatures than females. Alternatively, there were no differences in the EWL at identical temperatures between sexes, suggesting that experiencing the same environmental conditions during mating may favour similar EWL. Interestingly, Z. nigripes were estimated to undergo a decrease in metabolism at approximately 30 °C. It is proposed that Z. nigripes persist despite sensitivity to high temperatures using a combination of behavioural strategies and emergence during a period of relatively benign climate that ameliorates the impacts of high temperatures.  相似文献   

16.
Broad-scale comparisons of birds indicate the possibility of adaptive modification of basal metabolic rate (BMR) and total evaporative water loss (TEWL) in species from desert environments, but these might be confounded by phylogeny or phenotypic plasticity. This study relates variation in avian BMR and TEWL to a continuously varying measure of environment, aridity. We test the hypotheses that BMR and TEWL are reduced along an aridity gradient within the lark family (Alaudidae), and investigate the role of phylogenetic inertia. For 12 species of lark, BMR and TEWL decreased along a gradient of increasing aridity, a finding consistent with our proposals. We constructed a phylogeny for 22 species of lark based on sequences of two mitochondrial genes, and investigated whether phylogenetic affinity played a part in the correlation of phenotype and environment. A test for serial independence of the data for mass-corrected TEWL and aridity showed no influence of phylogeny on our findings. However, we did discover a significant phylogenetic effect in mass-corrected data for BMR, a result attributable to common phylogenetic history or to common ecological factors. A test of the relationship between BMR and aridity using phylogenetic independent constrasts was consistent with our previous analysis: BMR decreased with increasing aridity.  相似文献   

17.
18.
Aridity is an important determinant of species distributions, shaping both ecological and evolutionary diversity. Lizards and snakes are often abundant in deserts, suggesting a high potential for adaptation or acclimation to arid habitats. However, phylogenetic evidence indicates that squamate diversity in deserts may be more strongly tied to speciation within arid habitats than to convergent evolution following repeated colonization from mesic habitats. To assess the frequency of evolutionary transitions in habitat aridity while simultaneously testing for associated changes in water‐balance physiology, we analyzed estimates of total evaporative water loss (EWL) for 120 squamate species inhabiting arid, semiarid, or mesic habitats. Phylogenetic reconstructions revealed that evolutionary transitions to and from semiarid habitats were much more common than those between arid and mesic extremes. Species from mesic habitats exhibited significantly higher EWL than those from arid habitats, while species from semiarid habitats had intermediate EWL. Phylogenetic comparative methods confirmed this association between habitat aridity and EWL despite phylogenetic signal in each. Thus, the historical colonization of arid habitats by squamates is repeatedly associated with adaptive changes in EWL. This physiological convergence, which may reflect both phenotypic plasticity and genetic adaptation, has likely contributed to the success of squamates in arid environments.  相似文献   

19.
Water loss, cutaneous resistance, and the effects of dehydration on jumping ability were measured in two neotropical frogs, the common coquí (Eleutherodactylus coqui) and the cave coquí (Eleutherodactylus cooki). In both species jumping performance declined with an increase in water loss and a greater duration of exposure to dehydrating conditions. The arboreal species, E. coqui, had a slightly higher rate of water loss and lower cutaneous resistance than the non-arboreal species, E. cooki. However, differences in cutaneous resistance and water loss were too small to explain differences in geographic distributions of these species. In both species, a decline in boundary layer resistance contributed to an increased rate of water loss at higher temperature. Accepted: 4 January 1999  相似文献   

20.
横断山区中华姬鼠的体温调节和蒸发失水   总被引:2,自引:0,他引:2  
为探讨中华姬鼠的生理生态适应特征,对该鼠的代谢率、热传导、体温和蒸发失水等生理生态指标随环境温度从-5℃ ~ 35℃ 的变化进行了测定。结果表明:中华姬鼠的热中性区(TNZ)为20℃ ~ 30℃ ,平均体温为37. 2 ±0.3℃ ,体温在20℃ ~30℃ 范围内维持恒定;基础代谢率为3.17 ±0.08 ml O2 / g· h,最大非颤抖性产热为5.99 ±0.58 ml O2 / g· h,非颤抖性产热范围(最大非颤抖性产热与基础代谢率的比率)为1. 90,平均最小热传导(Cm )为0.16 ± 0.02 ml O2 / g· h℃ ,热中性区内,中华姬鼠的F 值(RMR /Kleiber 期望RMR)/ (C /Bradley 期望C)为1.58 ±0.10,中华姬鼠的蒸发失水随着温度增高而增加,蒸发失水在35℃ 达到峰值,为0.10 ±0.02 mgH2 O/ g· h。这些结果表明中华姬鼠对林地的适应特征是:基础代谢率较高,体温相对较低,最小热传导率与期望值相当,热中性区较宽,下临界温度较低;较高的最大非颤抖性产热和非颤抖性产热范围;蒸发失水在体温调节中占一定地位;这些特征与该物种的生活习性和栖息生境等因素密切相关,也可能是该物种对横断山区的适应对策。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号