首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conditional neuronal membrane potential oscillations have been identified as a potential mechanism to help support or generate rhythmogenesis in neural circuits. A genetically identified population of ventromedial interneurons, called Hb9, in the mouse spinal cord has been shown to generate TTX-resistant membrane potential oscillations in the presence of NMDA, serotonin and dopamine, but these oscillatory properties are not well characterized. Hb9 interneurons are rhythmically active during fictive locomotor-like behavior. In this study, we report that exogenous N-Methyl-D-Aspartic acid (NMDA) application is sufficient to produce membrane potential oscillations in Hb9 interneurons. In contrast, exogenous serotonin and dopamine application, alone or in combination, are not sufficient. The properties of NMDA-induced oscillations vary among the Hb9 interneuron population; their frequency and amplitude increase with increasing NMDA concentration. NMDA does not modulate the T-type calcium current (ICa(T)), which is thought to be important in generating locomotor-like activity, in Hb9 neurons. These results suggest that NMDA receptor activation is sufficient for the generation of TTX-resistant NMDA-induced membrane potential oscillations in Hb9 interneurons.  相似文献   

2.
By simultaneously recording the activity of individual neurons and field potentials in freely behaving mice, we found two types of interneurons firing at high frequency in the hippocampal CA1 region, which had high correlations with characteristic sharp wave-associated ripple oscillations (100–250 Hz) during slow-wave sleep. The firing of these two types of interneurons highly synchronized with ripple oscillations during slow-wave sleep, with strongly increased firing rates corresponding to individual ripple episodes. Interneuron type I had at most one spike in each sub-ripple cycle of ripple episodes and the peak firing rate was 310±33.17 Hz. Interneuron type II had one or two spikes in each sub-ripple cycle and the peak firing rate was 410±47.61 Hz. During active exploration, their firing was phase locked to theta oscillations with the highest probability at the trough of theta wave. Both two types of interneurons increased transiently their firing rates responding to the startling shake stimuli. The results showed that these two types of high-frequency interneurons in the hippocampal CA1 region were involved in the modulation of the hippocampal neural network during different states.  相似文献   

3.
Neuronal gamma oscillations have been described in local field potentials of different brain regions of multiple species. Gamma oscillations are thought to reflect rhythmic synaptic activity organized by inhibitory interneurons. While several aspects of gamma rhythmogenesis are relatively well understood, we have much less solid evidence about how gamma oscillations contribute to information processing in neuronal circuits. One popular hypothesis states that a flexible routing of information between distant populations occurs via the control of the phase or coherence between their respective oscillations. Here, we investigate how a mismatch between the frequencies of gamma oscillations from two populations affects their interaction. In particular, we explore a biophysical model of the reciprocal interaction between two cortical areas displaying gamma oscillations at different frequencies, and quantify their phase coherence and communication efficiency. We observed that a moderate excitatory coupling between the two areas leads to a decrease in their frequency detuning, up to ~6 Hz, with no frequency locking arising between the gamma peaks. Importantly, for similar gamma peak frequencies a zero phase difference emerges for both LFP and MUA despite small axonal delays. For increasing frequency detunings we found a significant decrease in the phase coherence (at non-zero phase lag) between the MUAs but not the LFPs of the two areas. Such difference between LFPs and MUAs behavior is due to the misalignment between the arrival of afferent synaptic currents and the local excitability windows. To test the efficiency of communication we evaluated the success of transferring rate-modulations between the two areas. Our results indicate that once two populations lock their peak frequencies, an optimal phase relation for communication appears. However, the sensitivity of locking to frequency mismatch suggests that only a precise and active control of gamma frequency could enable the selection of communication channels and their directionality.  相似文献   

4.
Tateno T  Robinson HP 《Bio Systems》2007,89(1-3):110-116
Population oscillations in neural activity in the gamma (>30 Hz) and higher frequency ranges are found over wide areas of the mammalian cortex. Recently, in the somatosensory cortex, the details of neural connections formed by several types of GABAergic interneurons have become apparent, and they are believed to play a significant role in generating these oscillations through synaptic and gap-junctional interactions. However, little is known about the mechanism of how such oscillations are maintained stably by particular interneurons and by their local networks, in a noisy environment with abundant synaptic inputs. To obtain more insight into this, we studied a fast-spiking (FS)-cell model including Kv3-channel-like current, which is a distinctive feature of these cells, from the viewpoint of nonlinear dynamical systems. To examine the specific role of the Kv3-channel in determining oscillation properties, we analyzed basic properties of the FS-cell model, such as the bifurcation structure and phase resetting curves (PRCs). Furthermore, to quantitatively characterize the oscillation stability under noisy fluctuations mimicking small fast synaptic inputs, we applied a recently developed method from random dynamical system theory to estimate Lyapunov exponents, both for the original four-dimensional dynamics and for a reduced one-dimensional phase-equation on the circle. The results indicated that the presence of the Kv3-channel-like current helps to regulate the stability of noisy neural oscillations and a transient-period length to stochastic attractors.  相似文献   

5.
Local nonspiking interneurons in the thoracic ganglia of insects are important premotor elements in posture control and locomotion. It was investigated whether these interneurons are involved in the central neuronal circuits generating the oscillatory motor output of the leg muscle system during rhythmic motor activity. Intracellular recordings from premotor nonspiking interneurons were made in the isolated and completely deafferented mesothoracic ganglion of the stick insect in preparations exhibiting rhythmic motor activity induced by the muscarinic agonist pilocarpine. All interneurons investigated provided synaptic drive to one or more motoneuron pools supplying the three proximal leg joints, that is, the thoraco-coxal joint, the coxa-trochanteral joint and the femur-tibia joint. During rhythmicity in 83% (n=67) of the recorded interneurons, three different kinds of synaptic oscillations in membrane potential were observed: (1) Oscillations were closely correlated with the activity of motoneuron pools affected; (2) membrane potential oscillations reflected only certain aspects of motoneuronal rhythmicity; and (3) membrane potential oscillations were correlated mainly with the occurrence of spontaneous recurrent patterns (SRP) of activity in the motoneuron pools. In individual interneurons membrane potential oscillations were associated with phase-dependent changes in the neuron's membrane conductance. Artificial changes in the interneurons' membrane potential strongly influenced motor activity. Injecting current pulses into individual interneurons caused a reset of rhythmicity in motoneurons. Furthermore, current injection into interneurons influenced shape and probability of occurrence for SRPs. Among others, identified nonspiking interneurons that are involved in posture control of leg joints were found to exhibit the above properties. From these results, the following conclusions on the role of nonspiking interneurons in the generation of rhythmic motor activity, and thus potentially also during locomotion, emerge: (1) During rhythmic motor activity most nonspiking interneurons receive strong synaptic drive from central rhythm-generating networks; and (2) individual nonspiking interneurons some of which underlie sensory-motor pathways in posture control, are elements of central neuronal networks that generate alternating activity in antagonistic leg motoneuron pools. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Gamma frequency network oscillations are assumed to be important in cognitive processes, including hippocampal memory operations, but the precise functions of these oscillations remain unknown. Here, we examine the cellular and network mechanisms underlying carbachol-induced fast network oscillations in the hippocampus in vitro, which closely resemble hippocampal gamma oscillations in the behaving rat. Using a combination of planar multielectrode array recordings, imaging with voltage-sensitive dyes, and recordings from single hippocampal neurons within the CA3 gamma generator, active current sinks and sources were localized to the stratum pyramidale. These proximal currents were driven by phase-locked rhythmic inhibitory inputs to pyramidal cells from identified perisomatic-targeting interneurons. AMPA receptor-mediated recurrent excitation was necessary for the synchronization of interneuronal discharge, which strongly supports a synaptic feedback model for the generation of hippocampal gamma oscillations.  相似文献   

7.
By simultaneously recording the activity of individual neurons and field potentials in freely behaving mice, we found two types of interneurons firing at high frequency in the hippocampal CA1 region, which had high correlations with characteristic sharp wave-associated ripple oscillations (100―250 Hz) during slow-wave sleep. The firing of these two types of interneurons highly synchronized with ripple oscillations during slow-wave sleep, with strongly increased firing rates corresponding to individual ripple episodes. Interneuron type I had at most one spike in each sub-ripple cycle of ripple episodes and the peak firing rate was 310±33.17 Hz. Interneuron type II had one or two spikes in each sub-ripple cycle and the peak firing rate was 410±47.61 Hz. During active exploration, their firing was phase locked to theta oscillations with the highest probability at the trough of theta wave. Both two types of interneurons increased transiently their firing rates responding to the startling shake stimuli. The results showed that these two types of high-frequency interneurons in the hippocampal CA1 region were involved in the modulation of the hippocampal neural network during different states.  相似文献   

8.
本文报道了硕螽听通路单个听觉中间神经元的声反应特征。依据动作电位发放模式的不同,听觉中间神经元可分为两类,即紧张型与相位型。紧张型听觉中间神经元属于窄凋谐带神经元,敏感的频率范围8—18千赫,反应最佳频率在12千赫附近,与同种雄硕螽叫声的主能峰相匹配。相位型听觉中间神经元属于宽调谐带神经元,有二个敏感频率范围,分别为5—8千赫和12—18千赫。它们对声强度的编码方式也不一样:分别以动作电位的数目与反应潜伏期对声强编码。本文还讨论了不同类型听觉中间神经元的功能意义。  相似文献   

9.
 During different behavioral states different population activities are present in the hippocampal formation. These activities are not independent: sharp waves often occur together with high-frequency ripples, and gamma-frequency activity is usually superimposed on theta oscillations. There is both experimental and theoretical evidence supporting the notion that gamma oscillation is generated intrahippocampally, but there is no generally accepted view about the origin of theta waves. Precise timing of population bursts of pyramidal cells may be due to a synchronized external drive. Membrane potential oscillations recorded in the septum are unlikely to fulfill this purpose because they are not coherent enough. We investigated the prospects of an intrahippocampal mechanism supplying pyramidal cells with theta frequency periodic inhibition, by studying a model of a network of hippocampal inhibitory interneurons. As shown previously, interneurons are capable of generating synchronized gamma-frequency action potential oscillations. Exciting the neurons by periodic current injection, the system could either be entrained in an oscillation with the frequency of the inducing current or exhibit in-phase periodic changes at the frequency of single cell (and network) activity. Simulations that used spatially inhomogeneous stimulus currents showed anti-phase frequency changes across cells, which resulted in a periodic decrease in the synchrony of the network. As this periodic change in synchrony occurred in the theta frequency range, our network should be able to exhibit the theta-frequency weakening of inhibition of pyramidal cells, thus offering a possible mechanism for intrahippocampal theta generation. Received: 23 February 2000 / Accepted in revised form: 30 June 2000  相似文献   

10.
Zhang L  Chen G  Niu R  Wei W  Ma X  Xu J  Wang J  Wang Z  Lin L 《Hippocampus》2012,22(8):1781-1793
The two-dipole model of theta generation in hippocampal CA1 suggests that the inhibitory perisomatic theta dipole is generated by local GABAergic interneurons. Various CA1 interneurons fire preferentially at different theta phases, raising the question of how these theta-locked interneurons contribute to the generation of theta oscillations. We here recorded interneurons in the hippocampal CA1 area of freely behaving mice, and identified a unique subset of theta-locked interneurons by using the Granger causality approach. These cells fired in an extremely reliable theta-burst pattern at high firing rates (~90 Hz) during exploration and always locked to ascending phases of the theta waves. Among theta-locked interneurons we recorded, only these cells generated strong Granger causal influences on local field potential (LFP) signals within the theta band (4-12 Hz), and the influences were persistent across behavioral states. Our results suggest that this unique type of theta-locked interneurons serve as the local inhibitory theta dipole control cells in shaping hippocampal theta oscillations.  相似文献   

11.
Networks of synchronized fast-spiking interneurons are thought to be key elements in the generation of gamma (γ) oscillations (30–80 Hz) in the brain. We examined how such γ-oscillatory inhibition regulates the output of a cortical pyramidal cell. Specifically, we modeled a situation where a pyramidal cell receives inputs from γ-synchronized fast-spiking inhibitory interneurons. This model successfully reproduced several important aspects of a recent experimental result regarding the γ-inhibitory regulation of pyramidal cellular firing that is presumably associated with the sensation of whisker stimuli. Through an in-depth analysis of this model system, we show that there is an obvious rhythmic gating effect of the γ-oscillated interneuron networks on the pyramidal neuron’s signal transmission. This effect is further illustrated by the interactions of this interneuron network and the pyramidal neuron. Prominent power in the γ frequency range can emerge provided that there are appropriate delays on the excitatory connections and inhibitory synaptic conductance between interneurons. These results indicate that interactions between excitation and inhibition are critical for the modulation of coherence and oscillation frequency of network activities.  相似文献   

12.
Gamma oscillations are widely seen in the awake and sleeping cerebral cortex, but the exact role of these oscillations is still debated. Here, we used biophysical models to examine how Gamma oscillations may participate to the processing of afferent stimuli. We constructed conductance-based network models of Gamma oscillations, based on different cell types found in cerebral cortex. The models were adjusted to extracellular unit recordings in humans, where Gamma oscillations always coexist with the asynchronous firing mode. We considered three different mechanisms to generate Gamma, first a mechanism based on the interaction between pyramidal neurons and interneurons (PING), second a mechanism in which Gamma is generated by interneuron networks (ING) and third, a mechanism which relies on Gamma oscillations generated by pacemaker chattering neurons (CHING). We find that all three mechanisms generate features consistent with human recordings, but that the ING mechanism is most consistent with the firing rate change inside Gamma bursts seen in the human data. We next evaluated the responsiveness and resonant properties of these networks, contrasting Gamma oscillations with the asynchronous mode. We find that for both slowly-varying stimuli and precisely-timed stimuli, the responsiveness is generally lower during Gamma compared to asynchronous states, while resonant properties are similar around the Gamma band. We could not find conditions where Gamma oscillations were more responsive. We therefore predict that asynchronous states provide the highest responsiveness to external stimuli, while Gamma oscillations tend to overall diminish responsiveness.  相似文献   

13.
The synchronous oscillatory activity characterizing many neurons in a network is often considered to be a mechanism for representing, binding, conveying, and organizing information. A number of models have been proposed to explain high-frequency oscillations, but the mechanisms that underlie slow oscillations are still unclear. Here, we show by means of analytical solutions and simulations that facilitating excitatory (E f) synapses onto interneurons in a neural network play a fundamental role, not only in shaping the frequency of slow oscillations, but also in determining the form of the up and down states observed in electrophysiological measurements. Short time constants and strong E f synapse-connectivity were found to induce rapid alternations between up and down states, whereas long time constants and weak E f synapse connectivity prolonged the time between up states and increased the up state duration. These results suggest a novel role for facilitating excitatory synapses onto interneurons in controlling the form and frequency of slow oscillations in neuronal circuits.  相似文献   

14.
Networks of hippocampal interneurons, with pyramidal neuronspharmacologically disconnected, can generate gamma-frequency(20 Hz and above) oscillations. Experiments and models have shownhow the network frequency depends on excitation of the interneurons,and on the parameters of GABA{\rm A}-mediated IPSCs betweenthe interneurons (conductance and time course). Herewe use network simulations to investigate how pyramidal cells, connected tothe interneurons and to each other throughAMPA-type and/or NMDA-type glutamatereceptors, might modify the interneuron network oscillation. With orwithout AMPA-receptor mediated excitation of the interneurons, the pyramidal cells and interneurons fired in phaseduring the gamma oscillation. Synaptic excitation of the interneuronsby pyramidal cellscaused them to fire spike doublets or short bursts at gammafrequencies, thereby slowing the population rhythm.Rhythmic synchronized IPSPs allowed the pyramidal cells toencode their mean excitation by their phase of firing relativeto the population waves.Recurrent excitation between the pyramidal cells couldmodify the phase of firing relative to the population waves.Our model suggests that pools of synaptically interconnectedinhibitory cells are sufficient to produce gamma frequency rhythms,but the network behavior can be modified by participation ofpyramidal cells.  相似文献   

15.
γ节律振荡是大脑皮质中常见的,频率在30~80 Hz之间的神经振荡模式,在初级视觉通道中能观察到多种起源的γ节律振荡.在小鼠、猫与猴V1的视觉诱发的γ节律振荡主要起源于L2/3和L4B,并对刺激参数敏感.猫与小鼠初级视觉通道(视网膜、LGN与V1)中观察到起源于视网膜由亮度诱发的高频γ节律振荡;在猴LGN却没有观察到γ节律振荡,而在V1上记录到亮度诱发的γ活动.γ节律振荡的产生与抑制性中间神经元网络有重要的关系,其中抑制性中间神经元中PV细胞被认为与自发γ节律振荡的产生相关. SOM细胞的参与对低频γ节律振荡(20~40 Hz)的产生起到关键作用;而光栅诱发的高频γ节律振荡(65~80 Hz)主要与PV细胞有关.动物在不同生理状态、发育阶段与脑疾病状态下光栅诱发的γ节律振荡存在较大差异,反映大脑对视觉信息加工的变化.  相似文献   

16.
Interneurons in the cercal sensory system of crickets respond in a cell-specific manner if the cercal hair sensilla are stimulated by air-particle oscillations at frequencies below about 2000 Hz. We investigated the filter properties of several of these interneurons, and tested the effect of stimulus intensity (typically 0.3–50 mm s−1 peak-to-peak air-particle velocity) on the frequency response in the range 5–600 Hz. We focus on three interneurons (the lateral and medial giant interneurons and interneuron 9-3a) of Acheta domesticus which are characterized by a relatively high sensitivity above ca. 50–200 Hz. The responses of the medial giant interneuron usually increase monotonically with frequency and intensity. Interneuron 9-3a and the lateral giant interneuron exhibit saturation or response decrement at high frequencies and intensities. The lateral giant interneuron has an additional peak of sensitivity below about 40 Hz. Small individual variations in the relative locations of the two response areas of this interneuron within the frequency-intensity field are responsible for a large variability obtained if frequency-response curves are determined for particular intensities. Stimulus frequency does not affect the principal directional preferences of the three interneurons. Nevertheless, if tested individually, the lateral giant interneuron and interneuron 9-3a exhibit small changes of directional tuning. Accepted: 12 November 1997  相似文献   

17.
Synchronous oscillations in neural activity are found over wide areas of the cortex. Specific populations of interneurons are believed to play a significant role in generating these synchronized oscillations through mutual synaptic and gap-junctional interactions. Little is known, though, about the mechanism of how oscillations are maintained stably by particular types of interneurons and by their local networks. To obtain more insight into this, we measured membrane-potential responses to small current-pulse perturbations during regular firing, to construct phase resetting curves (PRCs) for three types of interneurons: nonpyramidal regular-spiking (NPRS), low-threshold spiking (LTS), and fast-spiking (FS) cells. Within each cell type, both monophasic and biphasic PRCs were observed, but the proportions and sensitivities to perturbation amplitude were clearly correlated to cell type. We then analyzed the experimentally measured PRCs to predict oscillation stability, or firing reliability, of cells for a complex stochastic input, as occurs in vivo. To do this, we used a method from random dynamical system theory to estimate Lyapunov exponents of the simplified phase model on the circle. The results indicated that LTS and NPRS cells have greater oscillatory stability (are more reliably entrained) in small noisy inputs than FS cells, which is consistent with their distinct types of threshold dynamics.  相似文献   

18.
Kainate receptor (KAR) subunits are believed to be involved in abnormal GABAergic neurotransmission in the hippocampus (HIPP) in schizophrenia (SZ) and bipolar disorder. Postmortem studies have shown changes in the expression of the GluR5/6 subunits of KARs in the stratum oriens (SO) of sectors CA2/3, where the basolateral amygdala (BLA) sends a robust projection. Previous work using a rat model of SZ demonstrated that BLA activation leads to electrophysiological changes in fast-spiking interneurons in SO of CA2/3. The present study explores KAR modulation of interneurons in CA2/3 in response to BLA activation. Intrinsic firing properties of these interneurons through KAR-mediated activity were measured with patch-clamp recordings from rats that received 15 days of picrotoxin infusion into the BLA. Chronic BLA activation induced changes in the firing properties of CA2/3 interneurons associated with modifications in the function of KARs. Specifically, the responsiveness of these interneurons to activation of KARs was diminished in picrotoxin-treated rats, while the after-hyperpolarization (AHP) amplitude was increased. In addition, we tested blockers of KAR subunits which have been shown to have altered gene expression in SO sector CA2/3 of SZ subjects. The GluR5 antagonist UBP296 further decreased AP frequency and increased AHP amplitude in picrotoxin-treated rats. Application of the GluR6/7 antagonist NS102 suggested that activation of GluR6/7 KARs may be required to maintain the high firing rates in SO interneurons in the presence of KA. Moreover, the GluR6/7 KAR-mediated signaling may be suppressed in PICRO-treated rats. Our findings indicate that glutamatergic activity from the BLA may modulate the firing properties of CA2/3 interneurons through GluR5 and GluR6/7 KARs. These receptors are expressed in GABAergic interneurons and play a key role in the synchronization of gamma oscillations. Modulation of interneuronal activity through KARs in response to amygdala activation may lead to abnormal oscillatory rhythms reported in SZ subjects.  相似文献   

19.
Reduction of excitatory currents onto GABAergic interneurons in the forebrain results in impaired spatial working memory and altered oscillatory network patterns in the hippocampus. Whether this phenotype is caused by an alteration in hippocampal interneurons is not known because most studies employed genetic manipulations affecting several brain regions. Here we performed viral injections in genetically modified mice to ablate the GluA4 subunit of the AMPA receptor in the hippocampus (GluA4(HC-/-) mice), thereby selectively reducing AMPA receptor-mediated currents onto a subgroup of hippocampal interneurons expressing GluA4. This regionally selective manipulation led to a strong spatial working memory deficit while leaving reference memory unaffected. Ripples (125-250 Hz) in the CA1 region of GluA4(HC-/-) mice had larger amplitude, slower frequency and reduced rate of occurrence. These changes were associated with an increased firing rate of pyramidal cells during ripples. The spatial selectivity of hippocampal pyramidal cells was comparable to that of controls in many respects when assessed during open field exploration and zigzag maze running. However, GluA4 ablation caused altered modulation of firing rate by theta oscillations in both interneurons and pyramidal cells. Moreover, the correlation between the theta firing phase of pyramidal cells and position was weaker in GluA4(HC-/-) mice. These results establish the involvement of AMPA receptor-mediated currents onto hippocampal interneurons for ripples and theta oscillations, and highlight potential cellular and network alterations that could account for the altered working memory performance.  相似文献   

20.
The olfactory bulb receives signals from olfactory sensory neurons and conveys them to higher centers. The mapping of the sensory inputs generates a reproducible spatial pattern in the glomerular layer of the olfactory bulb for each odorant. Then, this restricted activation is transformed into highly distributed patterns by lateral interactions between relay neurons and local interneurons. Thus, odor information processing requires the spatial patterning of both sensory inputs and synaptic interactions. In other words, odor representation is highly dynamic and temporally orchestrated. Here, we describe how the local inhibitory network shapes the global oscillations and the precise synchronization of relay neurons. We discuss how local inhibitory interneurons transpose the spatial dimension into temporal patterning. Remarkably, this transposition is not fixed but highly flexible to continuously optimize olfactory information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号