首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P-type ATPases are membrane proteins that couple ATP hydrolysis with cation transport across the membrane. Ten different subtypes have been described. In mammalia, 15 genes of P-type ATPases from subtypes II-A, II-B and II-C, that transport low-atomic-weight cations (Ca2+, Na+, K+ and H+), have been reported. They include reticulum and plasma-membrane Ca2+-ATPases, Na+/K+-ATPase and H+/K+-ATPases. Enterocytes and colonocytes show functional differences, which seem to be partially due to the differential expression of P-type ATPases. These enzymes have 9 structural motifs, being the phosphorylation (E) and the Mg2+ATP-binding (H) motifs the most preserved. These structural characteristics permitted developing a Multiplex-Nested-PCR (MN-PCR) for the simultaneous identification of different P-type ATPases. Thus, using MN-PCR, seven different cDNAs were cloned from enterocytes and colonocytes, including SERCA3, SERCA2, Na+/K+-ATPase α1-isoform, H+/K+-ATPase α2-isoform, PMCA1, PMCA4 and a cDNA-fragment that seems to be a new cassette-type splice-variant of the atp1a1 gen. PMCA4 in enterocytes and H+/K+-ATPase α2-isoform in colonocytes were differentially expressed. This cell-specific expression pattern is related with the distinctive enterocyte and colonocyte functions.  相似文献   

2.
Plant plasma membrane H+-ATPases and Ca2+-ATPases maintain low cytoplasmic concentrations of H+ and Ca2+, respectively, and are essential for plant growth and development. These low concentrations allow plasma membrane H+-ATPases to function as electrogenic voltage stats, and Ca2+-ATPases as “off” mechanisms in Ca2+-based signal transduction. Although these pumps are autoregulated by cytoplasmic concentrations of H+ and Ca2+, respectively, they are also subject to exquisite regulation in response to biotic and abiotic events in the environment. A common paradigm for both types of pumps is the presence of terminal regulatory (R) domains that function as autoinhibitors that can be neutralized by multiple means, including phosphorylation. A picture is emerging in which some of the phosphosites in these R domains appear to be highly, nearly constantly phosphorylated, whereas others seem to be subject to dynamic phosphorylation. Thus, some sites might function as major switches, whereas others might simply reduce activity. Here, we provide an overview of the relevant transport systems and discuss recent advances that address their relation to external stimuli and physiological adaptations.

The regulation of plasma membrane H+-ATPases and autoinhibited Ca2+-ATPases exhibits a complex and dynamic network of posttranslational regulation. The regulation of plasma membrane H+-ATPases and autoinhibited Ca2+-ATPases exhibits a complex and dynamic network of posttranslational regulation.

P-type ATPases are found in all domains of life and constitute a large superfamily of membrane-bound pumps that share a common machinery, including a reaction cycle that involves catalytic phosphorylation of an Asp, resulting in a phosphorylated intermediate (reviewed in Palmgren and Nissen, 2011; (hence the name P-type; Box 1). The catalytic phosphoryl-aspartate intermediate is not to be confused with regulatory phosphorylation, which occurs on Ser, Thr, and Tyr residues. Five major families of P-type ATPases have been characterized (P1–5), each of which is divided into a number of subfamilies (named with letters). Plasma membrane H+-ATPases are classified as P3A ATPases, whereas Ca2+ pumps constitute P2A and P2B ATPases. In plants, these pumps are best characterized in the model plant Arabidopsis thaliana (Arabidopsis).Box 1Enzymology of P-type ATPases.P-type ATPases (reviewed in Palmgren and Nissen, 2011) alternate between two extreme conformations during their catalytic cycle: a high-affinity (with respect to ATP and the ion to be exported) Enzyme1 (E1) state, and a low-affinity Enzyme2 (E2) state. Many P-type ATPases are autoinhibited by built-in molecular constraints, namely their C- and N-terminal (for plasma membrane H+-ATPases; Palmgren et al., 1999) or N-terminal (for P2B Ca2+-ATPases; Malmström et al., 1997) regulatory (R) domains of approximately 100 amino acid residues, which act as brakes by stabilizing the pumps in a low-affinity conformation (Palmgren and Nissen, 2011), most likely E2. Neutralizing the R domain results in a shift in conformational equilibrium towards a high-affinity state, likely E1. In this way, the R domains of plasma membrane H+-ATPases and Ca2+-ATPases allow posttranslational modification events to control the turnover numbers of these pumps. A structure of a plasma membrane H+-ATPase (from the distantly related yeast S. cerevisiae) in its autoinhibited state has been solved (Heit et al., 2021). Its R domain is situated adjacent to the P domain, which would suggest that the R domain functions to restrict the conformational flexibility of the pump. Normally, the hydrolysis of ATP and transport are tightly coupled in P-type ATPases. Therefore, P-type ATPases hydrolyze bound ATP as soon as their ligand-binding site(s) in the membrane region are occupied, but not before. Thus, increasing the ligand affinity of an ATPase simultaneously increases its turnover number, provided that the concentration of ATP is not limiting, which is rarely the case in cells. A specific feature of plasma membrane H+-ATPases is that in the autoinhibited state, ATP hydrolysis is only loosely coupled to H+ pumping, whereas pump activation results in tight coupling, with one H+ pumped per ATP split (Pedersen et al., 2018).In response to internal and/or external cues, plasma membrane H+-ATPase and Ca2+-ATPase activities are controlled by intracellular concentrations of H+ and Ca2+, respectively, via interacting proteins, through posttranslational modification by phosphorylation, and by regulated trafficking of the pump to and from the plasma membrane. Their regulation sometimes involves changes in gene expression and turnover, although this is rare, perhaps because both processes are time- and energy-consuming (Haruta et al., 2018).  相似文献   

3.
P4-ATPases define a eukaryotic subfamily of the P-type ATPases, and are responsible for the transverse flip of specific lipids from the extracellular or luminal leaflet to the cytosolic leaflet of cell membranes. The enzymatic cycle of P-type ATPases is divided into autophosphorylation and dephosphorylation half-reactions. Unlike most other P-type ATPases, P4-ATPases transport their substrate during dephosphorylation only, i.e. the phosphorylation half-reaction is not associated with transport. To study the structural basis of the distinct mechanisms of P4-ATPases, we have determined cryo-EM structures of Drs2p-Cdc50p from Saccharomyces cerevisiae covering multiple intermediates of the cycle. We identify several structural motifs specific to Drs2p and P4-ATPases in general that decrease movements and flexibility of domains as compared to other P-type ATPases such as Na+/K+-ATPase or Ca2+-ATPase. These motifs include the linkers that connect the transmembrane region to the actuator (A) domain, which is responsible for dephosphorylation. Additionally, mutation of Tyr380, which interacts with conserved Asp340 of the distinct DGET dephosphorylation loop of P4-ATPases, highlights a functional role of these P4-ATPase specific motifs in the A-domain. Finally, the transmembrane (TM) domain, responsible for transport, also undergoes less extensive conformational changes, which is ensured both by a longer segment connecting TM helix 4 with the phosphorylation site, and possible stabilization by the auxiliary subunit Cdc50p. Collectively these adaptions in P4-ATPases are responsible for phosphorylation becoming transport-independent.  相似文献   

4.
Eukaryotic plasma membranes (PMs) are energized by electrogenic P-type ATPases that generate either Na+ or H+ motive forces to drive Na+ and H+ dependent transport processes, respectively. For this purpose, animal rely on Na+/K+-ATPases whereas fungi and plants employ PM H+-ATPases. Prokaryotes, on the other hand, depend on H+ or Na+-motive electron transport complexes to energize their cell membranes. This raises the question as to why and when electrogenic Na+ and H+ pumps evolved? Here it is shown that prokaryotic Na+/K+-ATPases have near perfect conservation of binding sites involved in coordination of three Na+ and two K+ ions. Such pumps are rare in Eubacteria but are common in methanogenic Archaea where they often are found together with P-type putative PM H+-ATPases. With some exceptions, Na+/K+-ATPases and PM H+-ATPases are found everywhere in the eukaryotic tree of life, but never together in animals, fungi and land plants. It is hypothesized that Na+/K+-ATPases and PM H+-ATPases evolved in methanogenic Archaea to support the bioenergetics of these ancestral organisms, which can utilize both H+ and Na+ as energy currencies. Both pumps must have been simultaneously present in the first eukaryotic cell, but during diversification of the major eukaryotic kingdoms, and at the time animals diverged from fungi, animals kept Na+/K+-ATPases but lost PM H+-ATPases. At the same evolutionary branch point, fungi did loose Na+/K+-ATPases, and their role was taken over by PM H+-ATPases. An independent but similar scenery emerged during terrestrialization of plants: they lost Na+/K+-ATPases but kept PM H+-ATPases.  相似文献   

5.
6.
7.
8.
P-type ATPases as drug targets: Tools for medicine and science   总被引:1,自引:0,他引:1  
P-type ATPases catalyze the selective active transport of ions like H+, Na+, K+, Ca2+, Zn2+, and Cu2+ across diverse biological membrane systems. Many members of the P-type ATPase protein family, such as the Na+,K+-, H+,K+-, Ca2+-, and H+-ATPases, are involved in the development of pathophysiological conditions or provide critical function to pathogens. Therefore, they seem to be promising targets for future drugs and novel antifungal agents and herbicides. Here, we review the current knowledge about P-type ATPase inhibitors and their present use as tools in science, medicine, and biotechnology. Recent structural information on a variety of P-type ATPase family members signifies that all P-type ATPases can be expected to share a similar basic structure and a similar basic machinery of ion transport. The ion transport pathway crossing the membrane lipid bilayer is constructed of two access channels leading from either side of the membrane to the ion binding sites at a central cavity. The selective opening and closure of the access channels allows vectorial access/release of ions from the binding sites. Recent structural information along with new homology modeling of diverse P-type ATPases in complex with known ligands demonstrate that the most proficient way for the development of efficient and selective drugs is to target their ion transport pathway.  相似文献   

9.
We have investigated the presence of K+-transporting ATPases that belong to the phylogenetic group of animal Na+,K+-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H+- and Na+,K+-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells.  相似文献   

10.
The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H+-ATPases has long been recognized to be part of a regulatory apparatus involving an autoinhibitory domain. Here we demonstrate that both the N and the C termini of the plant plasma membrane H+-ATPase are directly involved in controlling the pump activity state and that N-terminal displacements are coupled to secondary modifications taking place at the C-terminal end. This identifies the first group of P-type ATPases for which both ends of the polypeptide chain constitute regulatory domains, which together contribute to the autoinhibitory apparatus. This suggests an intricate mechanism of cis-regulation with both termini of the protein communicating to obtain the necessary control of the enzyme activity state.  相似文献   

11.
The amino acid sequences of 47 P-type ATPases from several eukaryotic and bacterial kingdoms were divided into three structural segments based on individual hydropathy profiles. Each homologous segment was (1) multiply aligned and functionally evaluated, (2) statistically analyzed to determine the degrees of sequence similarity, and (3) used for the construction of parsimonious phylogenetic trees. The results show that all of the P-type ATPases analyzed comprise a single family with four major clusters correlating with their cation specificities and biological sources as follows: cluster 1: Ca2+-transporting ATPases; cluster 2: Na+- and gastric H+-ATPases; cluster 3: plasma membrane H+-translocating ATPases of plants, fungi, and lower eukaryotes; and cluster 4: all but one of the bacterial P-type ATPases (specific for K+, Cd2+, Cu2+ and an unknown cation). The one bacterial exception to this general pattern was the Mg2+-ATPase of Salmonella typhimurium, which clustered with the eukaryotic sequences. Although exceptions were noted, the similarities of the phylogenetic trees derived from the three segments analyzed led to the probability that the N-terminal segments 1 and the centrally localized segments 2 evolved from a single primordial ATPase which existed prior to the divergence of eukaryotes from prokaryotes. By contrast, the C-terminal segments 3 appear to be eukaryotic specific, are not found in similar form in any of the prokaryotic enzymes, and are not all demonstrably homologous among the eukaryotic enzymes. These C-terminal domains may therefore have either arisen after the divergence of eukaryotes from prokaryotes or exhibited more rapid sequence divergence than either segment 1 or 2, thus masking their common origin. The relative rates of evolutionary divergence for the three segments were determined to be segment 2 < segment 1 < segment 3. Correlative functional analyses of the most conserved regions of these ATPases, based on published site-specific mutagenesis data, provided preliminary evidence for their functional roles in the transport mechanism. Our studies define the structural and evolutionary relationships among the P-type ATPases. They should provide a guide for the design of future studies of structure-function relationships employing molecular genetic, biochemical, and biophysical techniques. Correspondence to: M.H. Saier, Jr.  相似文献   

12.
Plasma membrane H+-ATPases form a subfamily of P-type ATPases responsible for pumping protons out of cells and are essential for establishing and maintaining the crucial transmembrane proton gradient in plants and fungi. Here, we report the reconstitution of the Arabidopsis thaliana plasma membrane H+-ATPase isoform 2 into soluble nanoscale lipid bilayers, also termed nanodiscs. Based on native gel analysis and cross-linking studies, the pump inserts into nanodiscs as a functional monomer. Insertion of the H+-ATPase into nanodiscs has the potential to enable structural and functional characterization using techniques normally applicable only for soluble proteins.  相似文献   

13.
The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state.  相似文献   

14.
During the last 3 years, genes for plasma membrane H+-ATPases from fungi, protozoa and plants have been isolated. Sequence similarities indicate that H+-ATPases constitute a separate group with the family of ATPases with phosphorylated intermediates. Yeast is a convenient model system to approach the physiology of H+-ATPases by recombinant DNA methodologies. A mutational analysis of yeast H+-ATPase has demonstrated that the enzyme is essential and rate-limiting for growth. Intracellular pH homeostasis is one of the crucial functions of H+-ATPase. In addition, there are indications for the direct energization of some essential transport system. The regulation of ATPase activity is probably mediated by an interaction between the active site and an inhibitory domain at the carboxyl-terminus.  相似文献   

15.
The plasmid-determined arsenite and antimonite efflux ATPase of bacteria differs from other membrane transport ATPases, which are classified into several families (such as the F0F1-type H+-translocating ATP synthases, the related vacuolar H+-translocating ATPases, the P-type cation-translocating ATPases, and the superfamily which includes the periplasmic binding-protein-dependent systems in Gram-negative bacteria, the human multidrug resistance P-glycoprotein, and the cystic fibrosis transport regulator). The amino acid sequences of the components of the arsenic resistance system are not similar to known ATPase proteins. New findings with the arsenic resistance operons of bacterial plasmids suggest that instead of being an orphan the Ars system will now be the first recognized member of a new class of ATPases. Furthermore, fundamental questions of energy-coupling (ATP-driven or chemiosmotic) have recently been raised and the finding that the arsC gene product is a soluble enzyme that reduces arsenate to arsenite changes the previous picture of the functioning of this widespread bacterial system.  相似文献   

16.
Localization of H+-ATPases in soybean root nodules   总被引:1,自引:0,他引:1  
The localization of H+-ATPases in soybean (Glycine max L. cv. Stevens) nodules was investigated using antibodies against both P-type and V-type enzymes. Immunoblots of peribacteroid membrane (PBM) proteins using antibodies against tobacco and Arabidopsis H+-ATPases detected a single immunoreactive band at approximately 100 kDa. These antibodies recognized a protein of similar relative molecular mass in the crude microsomal fraction from soybean nodules and uninoculated roots. The amount of this protein was greater in PBM from mature nodules than in younger nodules. Immunolocalization of P-type ATPases using silver enhancement of colloidal-gold labelling at the light-microscopy level showed signal distributed around the periphery of non-infected cells in both the nodule cortex and nodule parenchyma. In the central nitrogen-fixing zone of the nodule, staining was present in both the infected and uninfected cells. Examination of nodule sections using confocal microscopy and fluorescence staining showed an immunofluorescent signal clearly visible around the periphery of individual symbiosomes which appeared as vesicles distributed throughout the infected cells of the central zone. Electron-microscopic examination of immunogold-labelled sections shows that P-type ATPase antigens were present on the PBM of both newly formed, single-bacteroid symbiosomes just released from infection threads, and on the PBM of mature symbiosomes containing two to four bacteroids. Immunogold labelling using antibody against the B-subunit of V-type ATPase from oat failed to detect this protein on symbiosome membranes. Only a very faint signal with this antibody was detected on Western blots of purified PBM. During nodule development, fusion of small symbiosomes to form larger ones containing multiple bacteroids was observed. Fusion was preceded by the formation of cone-like extensions of the PBM, allowing the membrane to make contact with the adjoining membrane of another symbiosome. We conclude that the major H+-ATPase on the PBM of soybean is a P-type enzyme with homology to other such enzymes in plants. In vivo, this enzyme is likely to play a critical role in the regulation of nutrient exchange between legume and bacteroids. Received: 25 November 1998 / Accepted: 6 January 1999  相似文献   

17.
Members of the P4 subfamily of P-type ATPases are believed to catalyze phospholipid transport across membrane bilayers, a process influencing a host of cellular functions. Atomic structures and functional analysis of P-type ATPases that pump small cations and metal ions revealed a transport mechanism that appears to be conserved throughout the family. A challenging problem is to understand how this mechanism is adapted in P4 ATPases to flip phospholipids. P4 ATPases form oligomeric complexes with members of the CDC50 protein family. While formation of these complexes is required for P4 ATPase export from the endoplasmic reticulum, little is known about the functional role of the CDC50 subunits. The Na+/K+-ATPase and closely-related H+/K+-ATPase are the only other P-type pumps that are oligomeric, comprising mandatory β-subunits that are strikingly reminiscent of CDC50 proteins. Besides serving a role in the functional maturation of the catalytic α-subunit, the β-subunit also contributes specifically to intrinsic transport properties of the Na+/K+ pump. As β-subunits and CDC50 proteins likely adopted similar structures to accomplish analogous tasks, current knowledge of the Na+/K+-ATPase provides a useful guide for understanding the inner workings of the P4 ATPase class of lipid pumps.  相似文献   

18.
Na+ homeostasis in the cytoplasm is a common property of all organisms, irrespective of their taxonomic position. Low Na+ concentrations in the cytoplasm of living cells are maintained by specialized Na+-transporting molecular machines operating in the cell membranes. In eukaryotic cells, Na+-transporting ATPases of P-type play the important role in keeping the Na+ homeostasis. This review summarizes the authors’ investigations demonstrating the operation of the Na+-transporting P-type ATPases in the plasma membrane of green marine microalgae. Experiments described here provided the first evidence for the existence of the primary Na+-pump in plasma membranes of organisms attributed to the plant kingdom. The significance of the Na+-ATPases in halotolerant microalgae Dunaliella maritima and Tetraselmis viridis inhabiting saline environments is discussed.  相似文献   

19.
A search with the proposed amino acid translation product from the new ‘candidate gene’ for human Menkes disease against protein sequence libraries showed a remarkable similarity to that for the cadmium efflux ATPase from Staphylococcus aureus resistance plasmids. The Menkes sequence appears closer to the CadA Cd2+ sequence than to P-type ATPases from animal sources. Menkes syndrome is an X-chromosome invariably fatal disease that results from abberant copper metabolism. The gene that is defective in Menkes patients, i.e. the Menkes candidate gene, encodes a P-type ATPase, whose properties satisfactorily explain the phenotype of the disease. P-type ATPases are all cation pumps, either for uptake (e.g. the bacterial Kdp K+ ATPase), for efflux (e.g. the muscle sarcoplasmic reticulum Ca2+ ATPase), or for cation exchange (e.g. the animal cell Na+/K+ ATPase). These enzymes have a conserved aspartate residue that is transiently phosphorylated from ATP during the transport cycle, hence the name ‘P-type’ ATPase. The Menkes sequence shares with the staphylococcal CadA ATPase those regions common to all P-type ATPases and also an N-terminal dithiol region that was proposed to be a ‘metal-binding motif’. There are one or two copies of this motif in the available CadA sequences and six copies in the Menkes sequence.  相似文献   

20.
Calcium is an essential second messenger in yeast metabolism and physiology. So far, only four genes coding for calcium translocating ATPases had been discovered in yeast. The recent completion of the yeastSaccharomyces cerevisiae genome allowed us to identify six new putative Ca++-ATPases encoding genes. Protein sequence homology analysis and phylogenetic classification of all putative Ca++-ATPase gene products from the yeastsSaccharomyces cerevisiae andSchizosacchraomyces pombe reveal three clusters of homologous proteins. Two of them comprises seven proteins which might belong to a new class of P-type ATPases of unknown subcellular location and of unknown physiological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号