首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
玉米根系形态性状和空间分布对水分利用效率的调控   总被引:23,自引:0,他引:23  
玉米根系形态性状(总根长、根系表面积和根系干物质重)与植物整体水分利用效率间具有显著或极显著的相关性,回归曲线趋势基本相同,均呈二次曲线关系,只是相关系数不同。说明从提高水分利用效率来说,根系需要维持适宜的大小。其中根长对水分利用效率的贡献是第一位的,而根系干物质重的贡献最小,根系表面积介于二者之间。从空间分布来说,玉米每层节根数、节根长度和直径在父母本和杂交种间也具有显著或极显著的差异。与中下层根量相比,母本与不抗旱的父本处于上层干土中的根系数量明显较多,且根系直径大,吸水困难。而杂交种在干旱条件下上层根重和数量维持不变,或略高于不抗旱品种,但中层和下层根系数量和长度明显高于不抗旱品种,且根系直径小于不抗旱品种,这样从多的有效根系数量和低的吸水阻力两方面保证了水分的吸收,从而使其产量和水分利用效率均最高,说明通过根系形态特性和空间分布的优化能够调节作物整体的水分利用效率。  相似文献   

2.
植物根系吸水机理的研究进展   总被引:8,自引:0,他引:8  
近年来,植物根系吸水机理在细胞、组织和整体水平上的研究进展非常迅速,对阐明植物抗旱机制及其高效利用有限水资源途径的探讨具有重要意义。本文主要对植物根的复合结构和根系在土壤中的分布、根系中水流性质等方面的最新研究状况进行了概述,特别详细地论述了水通道蛋白的表达及功能与根系中水分运动的关系、以及根系输水的调节和根系吸水过程中的信号传导方面的研究动态,并且评价了根的复合运输模型和根系吸水的数学模型等,最后就其可能生理意义及其应用前景作了评述。  相似文献   

3.
近年来,植物根系吸水机理在细胞、组织和整体水平上的研究进展非常迅速,对阐明植物抗旱机制及其高效利用有限水资源途径的探讨具有重要意义.本文主要对植物根的复合结构和根系在土壤中的分布、根系中水流性质等方面的最新研究状况进行了概述,特别详细地论述了水通道蛋白的表达及功能与根系中水分运动的关系、以及根系输水的调节和根系吸水过程中的信号传导方面的研究动态,并且评价了根的复合运输模型和根系吸水的数学模型等,最后就其可能生理意义及其应用前景作了评述.  相似文献   

4.
冬小麦根系分布规律   总被引:23,自引:1,他引:23  
根据在郑州进行的冬小麦根系田间实测资料,研究了根长密度和根质量密度在砂壤土中的垂直分布.结果表明:冬小麦根量主要集中在上层,根长密度、根质量密度在0~50 cm土层内分别占57.7%和66.7%,而在50~100 cm层分别占23.4%和18.7%,根长密度和根质量密度随土壤深度的变化均符合指数函数形式;综合考虑根量分布、根系吸水等因素,确定了冬小麦适宜的底墒深度为100 cm.  相似文献   

5.
根据在郑州进行的冬小麦根系田间实测资料,研究了根长密度和根质量密度在砂壤土中的垂直分布。结果表明:冬小麦根量主要集中在上层,根长密度、根质量密度在0~50 cm土层内分别占57.%和66.%,而在50~100 cm层分别占23.%和18.%,根长密度和根质量密度随土壤深度的变化均符合指数函数形式;综合考虑根量分布、根系吸水等因素,确定了冬小麦适宜的底墒深度为100 cm。  相似文献   

6.
水分胁迫下不同基因型小麦苗期的形态生理差异   总被引:5,自引:0,他引:5  
以36个不同育成年代和生态区域的小麦品种为材料,研究了水分胁迫对小麦苗期生长的影响,并基于灰色关联分析评价了小麦品种苗期抗旱性的基因型差异.结果表明:小麦品种抗旱性差异显著,加权抗旱指数在0.2434~0.6580之间;17个形态生理性状中与抗旱性关联程度最大的是地上部干物质量(0.9473),最小的是叶绿素含量(0.5356).采用聚类分析将36个小麦品种分为3类,其中抗旱型8个、中间型23个、敏感型5个.3类基因型的地上部干物质量、根干物质量、植株干物质量、株高、根系氮积累量、叶面积和单株分蘖数差异显著,可作为小麦品种苗期抗旱性鉴定的直接指标.  相似文献   

7.
在塔克拉玛干沙漠腹地,采用分层分段挖掘法对不同灌溉量条件下(每株每次灌水35、24.5和14 kg)梭梭(Haloxylon ammodendron)幼苗根系的分布特征进行了研究。结果表明: 1)随着灌溉量的减少,梭梭幼苗根系生物量的分布格局有向深层发展的趋势,在不同灌溉量条件下地下垂直各层生物量与土壤垂直深度呈显著的负对数关系;2)各灌溉量梭梭幼苗的最大水平根长为垂直根长的2倍,但不同灌溉量根系生物量的水平分布趋势一致;3)吸收根生物量的垂直分布与土壤含水量的垂直变化基本一致,均呈“单峰型”曲线,但灌溉量不同,吸收根生物量峰值在土壤中出现的位置也不同,随着灌溉量的减少,吸收根集中分布区有向深层发展的趋势;4)根长、根表面积和根体积随着土壤深度的增加均呈“单峰型”曲线,灌溉量愈小,根长、根表面积和根体积的峰值愈位于土壤的深层;5)根冠比和垂直根深与株高之比随着灌溉量的减少而呈增加的趋势。  相似文献   

8.
资源吸收的动态生态位划分研究对于认识植物共存机制具有重要意义,然而至今对于该领域的理解仍然不足。在2019年生长季内,对华北平原上的一片毛白杨(Populustomentosa)-刺槐(Robiniapseudoacacia)成熟混交林进行了同位素和土壤含水率的重复取样,并于生长季末进行细根取样。通过氢氧稳定同位素方法和贝叶斯混合模型(Mix SIAR)确定了树木的季节性吸水模式,使用Pianka的标准化重叠值判断了毛白杨和刺槐的生态位重叠程度。结果显示:两个树种都具有深根系,但是,毛白杨倾向水平侧根的发育并在浅土层(0–30cm)分布更高比例的细根,而刺槐则倾向垂直主根的发育,在深土层(100–600 cm)分布高比例细根。就整个生长季的平均而言,毛白杨和刺槐的主要水源均是中层(30–100 cm)和深层土壤水。但是,浅层和中层土壤水对毛白杨吸水的贡献高于刺槐,深层土壤水和地下水则反之。在应对干旱和夏季强降雨时,毛白杨和刺槐表现出完全相反的吸水策略。在旱季,毛白杨增加中土层的吸水贡献,而刺槐则提高了对地下水的相对吸水量。当强降雨事件发生时,毛白杨增加浅土层的吸水贡献,而刺槐却增加深土...  相似文献   

9.
以早籼品种‘瑰宝八号’及其变异后代耐低钾的水稻为材料,用20%PEG6000模拟干旱,测定幼苗根系形态和部分生理特性的指标并对其抗旱能力进行比较的结果表明:耐低钾水稻幼苗的超氧化物歧化酶活性、根系活力和活跃吸收面积相对较高,而丙二醛含量相对较低,其根重和根体积也高,比其亲本‘瑰宝八号’有更高的抗旱能力.  相似文献   

10.
氮肥处理对氮素高效吸收水稻根系性状及氮肥利用率的影响   总被引:12,自引:0,他引:12  
2011—2012年在土培条件下,以氮素吸收效率差异较大的15个常规籼稻为供试材料,研究氮肥运筹对不同氮效率品种根系性状、成熟期吸氮量及氮肥利用率的影响,分析影响氮高效水稻氮素吸收的主要根系性状。结果表明:(1)各氮肥处理下,成熟期吸氮量均表现为氮高效品种氮中效品种氮低效品种。适量增施氮肥及基肥+促花肥处理有利于氮高效品种吸氮量的增加,氮素吸收受品种、氮肥处理的显著影响。(2)在施氮量处理下,氮高效品种单株不定根数、单株根干重、单株不定根总长大或较大,单株根活力在常氮(N2)、高氮(N3)处理下有一定的优势;在施氮时期处理下,氮高效品种单株不定根数、单株不定根总长、单株根干重、单株根系总吸收面积、单株根系活跃吸收面积、抽穗期冠根比多数处理有优势;增施氮肥有利于促进氮高效品种单株不定根总长和单株根活力的提高,适量施氮有利于单株不定根数、单株根干重增加,前期施氮可促进不定根的发生和伸长,后期施氮有利于不定根的充实和根系生理性状的提高。此外,增施氮肥可提高各类品种冠根比;(3)在常氮、高氮处理下,氮高效品种氮肥利用率大于氮中效、氮低效品种。(4)提高单株不定根数、单株不定根总长、单株根活力及抽穗期冠根比有利于各类品种吸氮量的提高,增加根干重对氮高效品种吸氮量的提高也有显著的促进作用。结合相关分析与通径分析结果,抽穗期冠根比及单株不定根数、单株根活力、单株不定根总长、单株根干重是影响氮高效品种吸氮能力的主要根系性状。  相似文献   

11.
Sequence of drought response of maize seedlings in drying soil   总被引:2,自引:0,他引:2  
Leaf elongation in monocotyledonous plants is sensitive to drought. To better understand the sequence of events in plants subjected to soil drying, leaf elongation and transpiration of maize seedlings ( Zea mays L.) of 4 cultivars were monitored continuously and the diurnal courses of the root and leaf water relations were determined. Results from this study indicate the following sequence of drought response: Leaf elongation decreased before changes in the leaf water relations of non‐growing zones of leaf blades were detected and before transpiration decreased. Reductions in leaf elongation preceded changes in the root water potential (ψw). Root ψw was not a very sensitive indicator of soil dryness, whereas the root osmotic potential (ψs) and root turgor (ψp) were more sensitive indicators. The earliest events observed in drying soil were a significant increase in the largest root diameter class (1 720 to 1 960 gm) and a decrease in leaf elongation ( P = 0.08) 2 days after withholding water. Significant increases in root length were observed 2 days later. Soil drying increased the number of fine roots with diameters of <240 µm. Slight increases in soil strength did not affect leaf elongation in the drying soil.  相似文献   

12.
Influence of root density on the critical soil water potential   总被引:1,自引:1,他引:0  
Estimation of root water uptake in crops is important for making many other agricultural predictions. This estimation often involves two assumptions: (1) that a critical soil water potential exists which is constant for a given combination of soil and crop and which does not depend on root length density, and (2) that the local root water uptake at given soil water potential is proportional to root length density. Recent results of both mathematical modeling and computer tomography show that these assumptions may not be valid when the soil water potential is averaged over a volume of soil containing roots. We tested these assumptions for plants with distinctly different root systems. Root water uptake rates and the critical soil water potential values were determined in several adjacent soil layers for horse bean (Vicia faba) and oat (Avena sativa) grown in lysimeters, and for field-grown cotton (Gossypium L.), maize (Zea mays) and alfalfa (Medicago sativa L.) crops. Root water uptake was calculated from the water balance of each layer in lysimeters. Water uptake rate was proportional to root length density at high soil water potentials, for both horse bean and oat plants, but root water uptake did not depend on root density for horse bean at potentials lower than −25 kPa. We observed a linear dependency of a critical soil water potential on the logarithm of root length density for all plants studied. Soil texture modified the critical water potential values, but not the linearity of the relationship. B E Clothier Section editor  相似文献   

13.
An efficient new numerical method for simultaneously simulating soil water flow and plant root growth is presented. It allows the calculation of the water uptake of an entire root system while preserving the local impact of single roots. The approach is based on the adaptive finite-element method, which enables a flexible fine resolution along individual roots, which cannot be achieved by classical non-adaptive algorithms.  相似文献   

14.
Droogers  P.  van der Meer  F.B.W.  Bouma  J. 《Plant and Soil》1997,188(1):83-91
The capacity of a soil to supply roots with water and nutrients for crop growth is important when defining sustainable land management which implies maintenance of production and reduction of production risks. Not only the amount of available water is important but also its accessibility, which differs among different soil structures. Different structures within one soil series were associated with three types of management: (i) conventional, temporary grassland (Conv), (ii) biodynamic, temporary grassland (Bio) and (iii) conventional permanent grassland (Perm). Transpiration of barley plants, under identical circumstances, and the associated rooting patterns, were measured in five large undisturbed cores from each of the three soil structures. Management had significantly changed bulk density, organic matter content and porosity. Measured transpiration showed significant differences with highest amounts for Perm followed by Conv and lowest amounts for Bio. Rooting pattern characteristics, defined as the relation between a series of hypothetical extraction zones around each root and the volumes of excluded soil were determined for the three structures. These rooting pattern characteristics were most favourable for Perm, followed by Bio and Conv, respectively. The water supply characteristics, defined as the number of days the soil can satisfy a transpiration demand of 5 mm d-1 as a function of a hypothetical extraction zone, reflects the capacity of the soil to supply roots with water. These water supply characteristics combined with the rooting pattern characteristics were used to quantify the accessibility of soil water. Accessibility was highest for Perm and Conv with 95% and 94% respectively, followed by Bio with 68%. When used in a simulation model and compared with simulations implicitly assuming total accessibility, measured transpirations were better simulated by introducing the expression for water accessibility.  相似文献   

15.
植物根系吸水过程中根系水流阻力的变化特征   总被引:3,自引:0,他引:3  
以植物根系吸水的人工模拟试验所测得的数据为依据,运用水流的电模拟原理,定理分析了不同土壤水分水平处理下植物根系吸水过程中根系水流阻力各主要分量的大小、变化规律及其相对重要性.结果表明,在同一水分水平处理中,植物根内木质部传导阻力(Rc)随生长时间的推移而减小,随土层深度的加深而增大,土根接触阻力(Rsr)、植物根系吸收阻力(Rr)随生长时间表现出先下降后上升阶段的动态变化特征;在不同水分水平处理中,Rc、Rsr、Rr均随土壤湿度减小而大幅度增大;在植物根系水流阻力各分量中,Rr占根系水流阻力的比例为55%~96%,Rsr约占根系水流阻力的4%~45%,而Rc仅占根系水流阻力的7×10-6,故Rr是决定植物根系吸水速率的重要因素  相似文献   

16.
An experiment was conducted to determine soil and plant resistance to water flow in faba bean under field conditions during the growing season. During each sampling period transpiration flux and leaf water potential measured hourly were used with daily measurements of root and soil water potential to calculate total resistance using Ohm's law analogy. Plant growth, root density and soil water content distributions with depth were measured. Leaf area and root length per plant reached their maximum value during flowering and pod setting (0.31 m2 and 2200 m, respectively), then decreasing until the end of the growing period. Root distribution decreased with depth ranging, on average, between 34.2% (in the 0–0.25 m soil layer) and 18.1% (in the 0.75–1.0 m soil layer). Mean root diameter was 0.6 mm but most of the roots were less than 0.7 mm in diameter. Changes in plant and soil water potentials reflected plant growth characteristics and climatic patterns. The overall relationship between the difference in water potential between soil and leaf and transpiration was linear, with the slope equal to average plant resistance (0.0165 MPa/(cm3 m-1 h-1 10-3). Different regression parameters were obtained for the various measurement days. The water potential difference was inversely related to transpiration at high leaf stomatal resistance and at high values of VPD. Total resistance decreased with transpiration flux in a linear relationship (r=−0.68). Different slope values were obtained for the different measurement days. Estimated soil resistance was much lower than the observed total resistance to water flow. The change from vegetative growth to pod filling was accompanied by an increase in plant resistance. The experimental results support previous findings that resistance to water flow through plants is not constant but is influenced by plant age, growth stage and environmental conditions. A more complex model than Ohm's law analogy may be necessary for describing the dynamic flow system under field conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
This study investigated the patterns of root growth and water uptake of maize (Zea mays L.) and cowpea (Vigna unguiculata (L.) Walp) grown in a mixture under greenhouse conditions. The plants were grown in root boxes for 5 weeks under 2 watering regimes; fully irrigated and water stress conditions, followed by a 5-day drying cycle imposed during the 6th week of growth. Water uptake patterns were analysed during the drying cycle. The two-dimensional distribution of the roots of both plants in the boxes was determined immediately at the end of the drying cycle. Under well-irrigated conditions, the roots of the component plants grew profusely into all sections of the root box and intermingled considerably. Water stress resulted in the decline of root growth of maize and cowpea but the root:shoot ratios of maize and cowpea were not affected, suggesting that there was no significant effect of water stress on root:shoot partitioning. However, water stress affected the biomass distribution between fine and coarse roots in cowpea. About 64% by weight of cowpea roots under water stress were coarse whereas as against 48% under well-irrigated conditions. Furthermore, water stress generally restricted the lateral extent of the roots of both maize and cowpea with a tendency of clumping together of the root systems and a reduced degree of intermingling. Thus, the extent of mixing of the root systems was apparently controlled by the availability of soil water. Water uptake from the well-irrigated soil in the root boxes was initially restricted to the sections directly below the base of each plant. Although roots of both plants were present in almost all sections of the root box, all the sections did not contribute simultaneously to water uptake by each plant. Water uptake was delayed from the middle intermingled zones. In effect, uptake patterns did not relate generally to the root distribution. The tendency was for the component plants to initially `avoid' water uptake from zones of intense intermingling or competition.  相似文献   

18.
We present a simple framework for modelling root growth and distribution with depth under varying soil water conditions. The framework considers the lateral growth of roots (proliferation) and the vertical extension of roots (root front velocity). The root front velocity is assumed to be constant when the roots descend into an initially wet soil profile. The lateral growth of roots is governed by two factors: (1) the current root mass or root length density at a given depth, and (2) soil water availability at that depth.Under non-limiting soil water conditions, the increase in root mass at any depth is governed by a logistic equation so that the root length density (R v) cannot exceed the maximum value. The maximumR v, is assumed to be the same for all depths. Additional dry matter partitioned to roots is initially distributed according to the current root mass at each depth. As the root mass approaches the maximum value, less dry matter is partitioned to that depth.When soil water is limiting, a water deficit factor is introduced to further modify the distribution of root dry matter. It is assumed that the plant is an energy minimiser so that more root mass is partitioned to the wetter regions of the soil where least energy will be expended for root growth. Hence, the model allows for enhanced root growth in areas where soil water is more easily available.Simulation results show that a variety of root distribution patterns can be reproduced due to varying soil water conditions. It has been demonstrated that broad patterns of root distribution reported in the literature can also be simulated by the model.  相似文献   

19.
Huang  Bingru 《Plant and Soil》1999,208(2):179-186
Effects of localized soil drought stress on water relations, root growth, and nutrient uptake were examined in drought tolerant ‘Prairie’ buffalograss [Buchloe dactyloides (Nutt.) Engelm.] and sensitive ‘Meyer’ zoysiagrass (Zoysia japonica Steud.). Grasses were grown in small rhizotrons in a greenhouse and subjected to three soil moisture regimes: (1) watering the entire 80-cm soil profile (well-watered control); (2) drying 0–40 cm soil and watering the lower 40 cm (partially dried); (3) and drying the entire soil profile (fully dried). Drying the 0–40 cm soil for 28 days had no effect on leaf water potential (Ψ leaf ) in Prairie buffalograss compared to the well-watered control but reduced that in Meyer zoysiagrass. Root elongation rate was greater for Prairie buffalograss than Meyer zoysiagrass under well-watered or fully dried conditions. Rooting depth increased with surface soil drying; with Prairie buffalograss having a larger proportion of roots in the lower 40 cm than Meyer zoysiagrass. The higher rates of water uptake in the deeper soil profile in the partially dried compared to the well-watered treatment and by Prairie buffalograss compared to Meyer zoysiagrass could be due to differences in root distribution. Root 15N uptake for Prairie buffalograss was higher in 0–20 cm drying soil in the partially dried treatment than in the fully dried treatment. Diurnal fluctuations in soil water content in the upper 20 cm of soil when the lower 40 cm were well-watered indicated water efflux from the deeper roots to the drying surface soil. This could help sustain root growth, maintain nutrient uptake in the upper drying soil layer, and prolong turfgrass growth under localized drying conditions, especially for the deep-rooted Prairie buffalograss. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Redistribution of water within plants could mitigate drought stress of roots in zones of low soil moisture. Plant internal redistribution of water from regions of high soil moisture to roots in dry soil occurs during periods of low evaporative demand. Using minirhizotrons, we observed similar lifespans of roots in wet and dry soil for the grapevine 'Merlot' (Vitis vinifera) on the rootstock 101-14 Millardet de Gramanet (Vitis riparia x Vitis rupestris) in a Napa County, California vineyard. We hypothesized that hydraulic redistribution would prevent an appreciable reduction in root water potential and would contribute to prolonged root survivorship in dry soil zones. In a greenhouse study that tested this hypothesis, grapevine root systems were divided using split pots and were grown for 6 months. With thermocouple psychrometers, we measured water potentials of roots of the same plant in both wet and dry soil under three treatments: control (C), 24 h light + supplemental water (LW) and 24 h light only (L). Similar to the field results, roots in the dry side of split pots had similar survivorship as roots in the wet side of the split pots (P = 0.136) in the C treatment. In contrast, reduced root survivorship was directly associated with plants in which hydraulic redistribution was experimentally reduced by 24 h light. Dry-side roots of plants in the LW treatment lived half as long as the roots in the wet soil despite being provided with supplemental water (P < 0.0004). Additionally, pre-dawn water potentials of roots in dry soil under 24 h of illumination (L and LW) exhibited values nearly twice as negative as those of C plants (P = 0.034). Estimates of root membrane integrity using electrolyte leakage were consistent with patterns of root survivorship. Plants in which nocturnal hydraulic redistribution was reduced exhibited more than twice the amount of electrolyte leakage in dry roots compared to those in wet soil of the same plant. Our study demonstrates that besides a number of ecological advantages to protecting tissues against desiccation, internal hydraulic redistribution of water is a mechanism consistent with extended root survivorship in dry soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号