首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proliferation kinetics of cells of the line NHIK 1922 grown in vitro and as solid tumours in the athymic mutant nude mouse has been studied. In vitro, growth curves were determined for exponentially growing populations and for populations synchronized by mitotic selection. The phase durations for these populations were determined by flow cytofluorometric measurements of DNA-histograms and pulsed incorporation of [3H]TdR respectively. The generation time and the phase durations for synchronized populations were found to be about equal to those for exponentially growing populations. The duration of the phases G1, S and G2+ M was found to be 8·5–9·5, 11·0–12·0 and 6·0–6·5 hr respectively, i.e. the generation time was 26·5–27·0 hr. The proliferation kinetics in vivo were studied by flow cytofluorometry and by the technique of percentage labelled mitoses. The median duration of S-phase and (G2+ M)-phase in vivo was found to be approximately the same as that observed in vitro, while the median duration of G1-phase was found to be approximately 5 hr longer in vivo than under the present in vitro growth conditions. The growth fraction in vivo was estimated to be approximately 50%. The non-proliferative compartment of the tumour cells was found to consist mainly of cells with the DNA-content of cells in G1-phase. It is concluded that the reduced rate of proliferation of NHIK 1922 cells in vivo is correlated with alterations in the duration of G1-phase and, hence, the proportion of cells in G1-phase.  相似文献   

2.
Mitotic indices (MI) expressed as numbers of metaphase figures per 100 basal cells in the cheek pouch and palatal epithelium of the Syrian hamster following metaphase arrest with vinblastine sulphate (VLB) were compared using in vivo and in vitro techniques. The MI in vivo 4 1/2 hr after intraperitoneal injection of 4 mg VLB/kg body weight was 2·69 ± 0·37 for cheek pouch and 12·08 ± 1·09 for palate. MI in vitro was measured using small tissue explants cultured for 4 hr in medium supplemented with VLB at concentrations ranging from 6-600 μg/ml. The maximum MI for cheek pouch epithelium in vitro (2·7) did not differ significantly from that observed in vivo (P > 0·50) and was obtained in the presence of 12–30 μg VLB/ml, a concentration comparable with that used in vivo. In contrast, the maximum MI for palate epithelium in culture (5·6) was significantly lower than that in vivo (P < 0·001) and was only achieved in the presence of extremely high concentrations of VLB. Possible reasons are discussed for the discrepancy between the MI for palatal epithelium in vivo and in vitro.  相似文献   

3.
Aims: To evaluate the feasibility of using an in vitro cell assay to select attenuated bacterial mutants. Methods and Results: Using catfish gill cells G1B, the feasibility of using an in vitro assay instead of in vivo virulence assay using live fish to select attenuated bacterial mutants was evaluated in this study. Pearson correlation analysis between in vitro virulence to G1B cells and in vivo virulence of Aeromonas hydrophila and Edwardsiella tarda revealed that there was a significant correlation between the two (r = ?0·768, P value = 3·7 × 10?16). Conclusions: The in vitro cell assay might be initially used to screen large quantities of bacteria to select attenuated mutants of catfish pathogens. Significance and Impact of the Study: The in vitro cell assay using catfish gill cells to identify attenuated mutants of catfish pathogens will reduce cost involved in the in vivo virulence assay that requires many fish and aquariums.  相似文献   

4.
The in vitro proliferation kinetics of a cell line derived from a patient with American Burkitt's lymphoma were investigated at three different growth phases: lag (day 1), exponential (day 3) and plateau (day 5). The growth curve, labeling and mitotic indices, percentage labeled mitosis (PLM) curves and DNA content distributions were determined. The data obtained have been analysed by the previously developed discrete-time kinetic (DTK) model by which a time course of DNA distributions during a 10-day growth period was characterized in terms of other cell kinetic parameters. The mean cell cycle times, initially estimated from PLM curves on days 1, 3 and 5, were further analysed by the DTK model of DNA distributions and subsequently the mean cell cycle times with respect to DNA distributions during the entire growth period were determined. The doubling times were 39·6, 31·2 and 67·2 hr, respectively, at days 1, 3 and 5. The mean cell cycle time increased from 23·0 to 37·7 hr from day 3 to day 5 mainly due to an elongation of the G1 and G2 phases. A slight increase in the cell loss rate from 0·0077 to 0·0081 fraction/hr was accompanied by a decrease in the cell production rate from 0·0299 to 0·0184 fraction/hr. This calculated cell loss rate correlated significantly with the number of dead cells determined by trypan blue exclusion. Analysis of the number of dead cells in relation to the cell cycle stage revealed that a majority of cell death occurred in G1 (r= 0·908; P < 0·0001). There was a good correlation between the in vitro proliferation kinetics at plateau phase of this Burkitt's lymphoma derived cell line and the in vivo proliferation kinetics of African Burkitt's lymphoma (Iversen et al., 1974), suggesting the potential utility of information obtained by in vitro kinetic studies.  相似文献   

5.
Pulse labelling experiments with [3H] thymidine (dT) and double labelling experiments with [3H]dT and bromodeoxyuridine (BrdUrd) were carried out on cells of the subependymal layer in the brain of adult normal mice in vivo, in vivo/in vitro and in vitro. The results should (i) lead to information about cell cycle parameters of these cells in the brain of adult mice, since these cells have been studied mostly in the rat brain up to now and (ii) answer the question whether results concerning cell proliferation obtained in vivo correspond with those from brain slices incubated in vitro with or without prelabelling in vivo. In vivo an LI of 20.2 ± 2.7% (x?± SEM) and Ts= 7.2 ± 0.7h were found. Furthermore, grain count halving experiments led to a surprisingly short cycle time (Tc) of 11.2–14.2 h. The longer Tc values (18–20 h) reported in the literature for subependymal cells in the rat brain seem to be due to evaluations of different areas around the lateral ventricle without considering the migrating behaviour of these cells which is quite different regionally. The in vitro studies (with or without prelabelling in vivo) showed a significantly reduced LI due to the fact that about 20% of the S phase cells, possibly lying in the middle of S, stopped further DNA synthesis after transfer to culture. This was shown by comparing the cell fluxes at the G1/S and S/G2 borders of in vivo vs. in vitro studies.  相似文献   

6.
A suitable method for extraction of floridoside phosphate synthase (FPS, UDP-galactose: sn-3-glycerol phosphate: 1→2′α-D-galactosyl transferase)from Porphyra perforata J. Ag. was developed. Two assay methods for enzyme activity were utilized, one measuring the amount of floridoside formed by using gas-liquid chromatography, the other measuring the sn-3-glycerol phosphate-dependent formation of UDP; both assays gave similar results. FPS is a soluble protein, and FPS activity in the extract as determined by the amount of product formed in vitro compared well with the in vivo rate of floridoside synthesis (4–7 μMmol product formed·h?1·g?1 fresh wt). The rate of product formation in vitro was linear up to 45 min and proportional to protein concentration in the assay mixture. The temperature optimum was 30–35° C. FPS was active over a range of pH values from 7.0–8.5. It was stable in concentrated solutions in the presence of 0.3 M ammonium sulfate, but activity was lost in diluted solution (protein concentration below 0.2 mg·mL?1) or below 0.2 M ion strength. The data suggest that FPS may be an oligomeric protein which occurs free in the cytoplasm or loosely bound to a membrane. It may also be a regulatory protein controlling the overall rate of synthesis of floridoside in vivo.  相似文献   

7.
Aims: To determine if nisin F‐loaded self‐setting brushite cement could control the growth of Staphylococcus aureus in vivo. Methods and Results: Brushite cement was prepared by mixing equimolar concentrations of β‐tricalcium phosphate and monocalcium phosphate monohydrate. Nisin F was added at 5·0, 2·5 and 1·0% (w/w) and the cement moulded into cylinders. In vitro antibacterial activity was determined using a delayed agar diffusion assay. Release of nisin F from the cement was determined using BCA protein assays. Based on scanning electron microscopy and X‐ray diffraction analysis, nisin F did not cause significant changes in cement structure or chemistry. Cement containing 5·0% (w/w) nisin F yielded the most promising in vitro results. Nisin F‐loaded cement was implanted into a subcutaneous pocket on the back of mice and then infected with S. aureus Xen 36. Infection was monitored for 7 days, using an in vivo imaging system. Nisin F prevented S. aureus infection for 7 days and no viable cells were isolated from the implants. Conclusions: Nisin F‐loaded brushite cement successfully prevented in vivo growth of S. aureus. Significance and Impact of the Study: Nisin F incorporated into bone cement may be used to control S. aureus infection in vivo.  相似文献   

8.
The frequency and distribution of labelled cells were studied immunohistochemically in 37 squamous cell carcinomas (SCC) of head and neck after in vivo infusion of IdUrd and BrdUrd. Tumours were classified according to their labelling patterns. Low and moderate grade SCC consisted of tumour islands separated by interstitial tissue. In some tumours labelled cells only appeared near the basal layer while in others proliferative cells were evenly distributed within the neoplastic island. In anaplastic carcinomas labelled cells were distributed either randomly or around blood vessels (cord structures). While the basal layer in adjacent normal epithelium contained very few labelled cells (LI = 1.6 ± 0.2%), the LI of basal cells in tumour islands were much higher than the average LI of the tumour (47.2 ± 2.8% and 23.8 ± 1.6%, respectively). In patients who had received cytotoxic therapy up to two months before the biopsy, the LI in the basal layer of normal epithelium was 19.0 ± 3.5%. In sequential biopsies obtained 1–2 weeks after the infusion of IdUrd and BrdUrd some labelled tumour cells were found in necrotic foci and in pearl structures. Additionally, in six tumours, we found areas of cells labelled with IdUrd alone, even though the IdUrd infusion had been followed by a BrdUrd infusion 1 h later. This is in agreement with the phenomenon of intermittent tumour blood flow described earlier in experimental tumours.  相似文献   

9.
The present study was designed in order to evaluate the effects of five homoeopathic complex preparations on functional activity natural killer cells (NKCs) in advanced cancer patients. We examined the effects of Coenzyme Compositum®, Ubichinon Compositum®, Glyoxal Compositum®, Katalysatoren® and Traumeel® on the functional activity of NKCs. Experimental procedures included in vitro and in vivo trials. The in vitro trials were performed in NKCs isolated from 12 healthy volunteers (aged 44 ± 4 years) and incubated with the five homoeopathic complex preparations. The in vivo trials were performed in 15 advanced cancer patients (aged 55 ± 12 years) supplemented for 3 months with the homoeopathic preparations. All five homoeopathic preparations significantly increased the cytotoxic activity of the NKCs at the lowest NKCs/target cell ratio 12:1 (p < 0·05). The order of activity was: Ubichinon Compositum® > Glyoxal Compositum® > Katalysatoren® > Traumeel® > Coenzyme Compositum®. In the advanced cancer patients, the homoeopathic preparation significantly increased NKCs cytotoxic activity (p < 0·05). The homoeopathic complex preparations tested in this study can be used as an adjuvant immunotherapy in advanced cancer patients. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Aims: To study the anti‐tumour effects of Enterococcus faecalis CECT7121 on LBC cells, an aggressive murine T‐cell lymphoma that kills the host in 18 days when is intraperitoneally (i.p.) administrated. Methods and Results: In vitro studies have shown that LBC cell proliferation was inhibited by Ent. faecalis CECT7121 stimulus in a dose‐dependent manner, inducing apoptosis. The production of ceramide was involved in the latter effect. To undertake in vivo studies, syngeneic BALB/c mice pre‐treated i.p. with Ent. faecalis CECT7121 (2·5 × 108 CFU) were challenged i.p. with LBC cells (1·0 × 106 cells) the day after. On day 30 post‐inoculation of LBC cells, 70% of Ent. faecalis CECT7121 pre‐treated mice survived, whereas no survivals were recorded in the control group. A group of surviving mice was re‐challenged with LBC cells, and 89% of them survived. Upon stimulation with irradiated LBC cells, spleen cell proliferation, high IFNγ, IL‐12 and IL‐10 levels were observed in surviving animals. Conclusions: Enterococcus faecalis CECT7121 affected multiple factors of the tumour establishment by the following methods: down‐regulating the LBC cell proliferation and inducing apoptosis in these cells; and enhancing the immune response that protects animals from lymphoma challenge and re‐challenge. Significance and Impact of the Study: This study demonstrate that Ent. faecalis CECT7121 has potential as a probiotic that could facilitate the development of novel complements to therapeutic strategies against oncological diseases.  相似文献   

11.
The tumour suppressor gene, p53, plays an important role in tumour development. Under low levels of oxygen (hypoxia), cells expressing wild-type p53 undergo programmed cell death (apoptosis), whereas cells expressing mutations in the p53 gene may survive and express angiogenic growth factors that stimulate tumour vascularization. Given that cells expressing mutations in the p53 gene have been observed in many forms of human tumour, it is important to understand how both wild-type and mutant cells react to hypoxic conditions. In this paper a mathematical model is presented to investigate the effects of alternating periods of hypoxia and normoxia (normal oxygen levels) on a population of wild-type and mutant p53 tumour cells. The model consists of three coupled ordinary differential equations that describe the densities of the two cell types and the oxygen concentration and, as such, may describe the growth of avascular tumours in vitro and/or in vivo. Numerical and analytical techniques are used to determine how changes in the system parameters influence the time at which mutant cells become dominant within the population. A feedback mechanism, which switches off the oxygen supply when the total cell density exceeds a threshold value, is introduced into the model to investigate the impact that vessel collapse (and the associated hypoxia) has on the time at which the mutant cells become dominant within vascular tumours growing in vivo. Using the model we can predict the time it takes for a subpopulation of mutant p53 tumour cells to become the dominant population within either an avascular tumour or a localized region of a vascular tumour. Based on independent experimental results, our model suggests that the mutant population becomes dominant more quickly in vivo than in vitro (12 days vs 17 days).  相似文献   

12.
The rate of cell production in thirty-five cases of carcinoma in Bilharzial bladder was evaluated from the labelling index after in vitro incubation with [3H]TdR. Squamous cell carcinoma was the most frequent histological type in this series and had a median LI of 8.0% which corresponds to a potential doubling time of 5.9 days. In squamous cell tumours the LI increased with the histological grade. Transitional cell tumours had a somewhat greater LI. In all histological types the LI was significantly greater in the deep infiltrating parts of the tumour than in the superficial parts. The discrepancy between the estimated potential doubling time and the growth rate normally attributed to such tumours suggests the existence of an extensive cell loss factor. Areas of focal or diffuse mucosal hyperplasia were associated with increased LI.  相似文献   

13.
The present study aims to investigate the in vivo and in vitro anti‐tumour properties of phenethyl isothiocyanate (PEITC) alone and in combination with doxorubicin (Dox). The anti‐tumour activity was evaluated in vitro by MTT assay using cultured human breast cancer cell line (MCF‐7) and human hepatoma cell line (HepG‐2) cell lines. In vivo, Ehrlich solid tumour model was used. Tumour volume, weight and antioxidant parameters were determined. Immunohistochemistry analysis for active (cleaved) caspase‐3 was also performed. We tested the effect of PEITC treatment on pAkt/Akt ratio, NF‐κB p65 DNA binding activity and caspase‐9 enzyme activity in both MCF‐7 and HepG‐2 cell lines. Effect of PEITC treatment on cell migration was assessed by wound healing assay. PEITC and/or Dox treatment significantly inhibited solid tumour volume and tumour weight when compared with control mice. PEITC treatment significantly reduced oxidative stress caused by Dox treatment as indicated by significant increase in total antioxidant capacity and decrease in malondialdehyde level. Microscopic examination of tumour tissues showed a significant increase in active (cleaved) caspase‐3 expression in PEITC and/or Dox treated groups. PEITC showed a dose‐dependent inhibition of MCF‐7 and HepG‐2 cellular viability. PEITC inhibited Akt and NF‐κB activation and increased caspase‐9 activity in a dose‐dependent manner. PEITC treatment effectively inhibited both MCF‐7 and HepG‐2 cell migration. We can conclude that PEITC acts via multiple molecular targets to elicit anti‐carcinogenic activity. PEITC/Dox combination therapy might be a potential novel strategy, which may benefit patients with breast and liver cancers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.

Background

We identified two 3p21.3 regions (LUCA and AP20) as most frequently affected in lung, breast and other carcinomas and reported their fine physical and gene maps. It is becoming increasingly clear that each of these two regions contains several TSGs. Until now TSGs which were isolated from AP20 and LUCA regions (e.g.G21/NPRL2, RASSF1A, RASSF1C, SEMA3B, SEMA3F, RBSP3) were shown to inhibit tumour cell growth both in vitro and in vivo.

Methodology/Principal Findings

The effect of expression HYAL1 and HYAL2 was studied by colony formation inhibition, growth curve and cell proliferation tests in vitro and tumour growth assay in vivo. Very modest growth inhibition was detected in vitro in U2020 lung and KRC/Y renal carcinoma cell lines. In the in vivo experiment stably transfected KRC/Y cells expressing HYAL1 or HYAL2 were inoculated into SCID mice (10 and 12 mice respectively). Tumours grew in eight mice inoculated with HYAL1. Ectopic HYAL1 was deleted in all of them. HYAL2 was inoculated into 12 mice and only four tumours were obtained. In 3 of them the gene was deleted. In one tumour it was present but not expressed. As expected for tumour suppressor genes HYAL1 and HYAL2 were down-expressed in 15 fresh lung squamous cell carcinomas (100%) and clear cell RCC tumours (60–67%).

Conclusions/Significance

The results suggest that the expression of either gene has led to inhibition of tumour growth in vivo without noticeable effect on growth in vitro. HYAL1 and HYAL2 thus differ in this aspect from other tumour suppressors like P53 or RASSF1A that inhibit growth both in vitro and in vivo. Targeting the microenvironment of cancer cells is one of the most promising venues of cancer therapeutics. As major hyaluronidases in human cells, HYAL1 and HYAL2 may control intercellular interactions and microenvironment of tumour cells providing excellent targets for cancer treatment.  相似文献   

15.
Tobacco (Nicotiana tabacum L.) plants were cultured in vitro photoautotrophically at three levels of irradiance (PAR 400–700 nm): low (LI, 60 μmol m−2 s−1), middle (MI, 180 μmol m−2 s−1) and high (HI, 270 μmol m−2 s−1). Anatomy of the fourth leaf from bottom was followed during leaf development. In HI and MI plants, leaf area expansion started earlier as compared to LI plants, and both HI and MI plants developed some adaptations of sun species: leaves were thicker with higher proportion of palisade parenchyma to spongy parenchyma tissue. Furthermore, in HI and MI plants palisade and spongy parenchyma cells were larger and relative abundance of chloroplasts in parenchyma cells measured as chloroplasts cross-sectional area in the cell was lower than in LI plants. During leaf growth, chloroplasts crosssectional area in both palisade and spongy parenchyma cells in all treatments considerably decreased and finally it occupied only about 5 to 8 % of the cell cross-sectional area. Thus, leaf anatomy of photoautotrophically in vitro cultured plants showed a similar response to growth irradiance as in vivo grown plants, however, the formation of chloroplasts and therefore of photosynthetic apparatus was strongly impaired.  相似文献   

16.
Osteosarcoma is the most common primary bone tumour. Increasing evidence has demonstrated the pathogenic role of microRNA (miRNAs) dysregulation in tumour development. miR‐379 was previously reported to function as an oncogenic or tumour‐suppressing miRNA in a tissue‐dependent manner. However, its function in osteosarcoma remains unknown. In this study, we found that the expression of miR‐379 was downregulated in osteosarcoma tissues and cell lines. Further functional characterization revealed that miR‐379 suppressed osteosarcoma cell proliferation and invasion in vitro and retarded the growth of osteosarcoma xenografts in vivo. Mechanistically, PDK1 was identified as the direct target of miR‐379 in osteosarcoma, in which PDK1 expression was up‐regulated and showed inverse correlation with miR‐379. Enforced expression of PDK1 promoted osteosarcoma cell proliferation and rescued the anti‐proliferative effect of miR‐379. These data suggest that miR‐379 could function as a tumour‐suppressing miRNA via targeting PDK1 in osteosarcoma.  相似文献   

17.
Cell death is an important biological process that is believed to have a central role in intestinal ischaemia/reperfusion (I/R) injury. While the apoptosis inhibition is pivotal in preventing intestinal I/R, how necrotic cell death is regulated remains unknown. Necroptosis represents a newly discovered form of programmed cell death that combines the features of both apoptosis and necrosis, and it has been implicated in the development of a range of inflammatory diseases. Here, we show that receptor‐interacting protein 1/3 (RIP1/3) kinase and mixed lineage kinase domain‐like protein recruitment mediates necroptosis in a rat model of ischaemic intestinal injury in vivo. Furthermore, necroptosis was specifically blocked by the RIP1 kinase inhibitor necrostatin‐1. In addition, the combined treatment of necrostatin‐1 and the pan‐caspase inhibitor Z‐VAD acted synergistically to protect against intestinal I/R injury, and these two pathways can be converted to one another when one is inhibited. In vitro, necrostatin‐1 pre‐treatment reduced the necroptotic death of oxygen‐glucose deprivation challenged intestinal epithelial cell‐6 cells, which in turn dampened the production of pro‐inflammatory cytokines (tumour necrosis factor‐α and interleukin‐1β), and suppressed high‐mobility group box‐1 (HMGB1) translocation from the nucleus to the cytoplasm and the subsequent release of HMGB1 into the supernatant, thus decreasing the activation of Toll‐like receptor 4 and the receptor for advanced glycation end products. Collectively, our study reveals a robust RIP1/RIP3‐dependent necroptosis pathway in intestinal I/R‐induced intestinal injury in vivo and in vitro and suggests that the HMGB1 signalling is highly involved in this process, making it a novel therapeutic target for acute ischaemic intestinal injury.  相似文献   

18.
The technique of buoyant density separation in gradients of Bovine Serum Albumin has been used to separate hemopoietic cell populations in mouse bone marrow that form in vivo spleen colonies and in vitro colonies of granulocytes and macrophages in an agar culture system. The density distribution profiles showed a number of reproducible density subpopulations of both in vivo and in vitro colony forming cells (C.F.C.'s). The mean density of in vitro C.F.C.'s exceeded that of the in vivo but overlap of the density profiles of the two populations was evident. Density-related differences in seeding efficiency of in vivo C.F.C.'s were observed. Freund's adjuvant treatment increased marrow and spleen in vitro C.F.C. populations. Marrow density profiles obtained three and seven days after adjuvant showed a progressive increase in in vitro C.F.C.'s in a restricted density region with no associated elevation of in vivo activity. The antimitotic agent, vinblastine, revealed differences in mitotic activity between the two cell populations, reducing the in vitro C.F.C. population to .07% and the in vivo to 5% of normal in 24 hours. Density separation of vinblastine-treated marrow produced density regions devoid of in vitro activity but containing in vivo in vivo C.F.C.'s which, upon transfer to irradiated recipients, regenerated both in vivo and in vitro density distribution profiles.  相似文献   

19.
20.
The proliferation parameters of the Walker carcinoma were estimated from both in vivo and in vitro measurements. The transplantable Walker carcinoma 256 was grown in male inbred BD1 rats. During exponential growth, 5-6 days after transplantation, a PLM curve was performed, yielding estimates of Tc ? 18.0 hr, Ts ? 6.4 hr, TG2+M? 4.1 hr. With the double labelling technique in vitro under 2.2 atm oxygen we obtained: Tc ? 18.2hr, Ts ? 8.2 hr, TG2+M? 2.0hr. From pulse cyto-photometry DNA content histograms the fractions of cells in the cell cycle phases were calculated using a computer program: fG1? (47.6 ± 1.1)%, fs? (34.1 ± 1.0)%, fG2+M? (18.3 ± 1.5)%. These fractions remained constant between the fifth and the twelfth day after transplantation. At that time the tumour growth had already slowed down appreciably. The growth fraction determined by repetitive labelling was 0.96 on the fifth and 0.93 on the seventh and eleventh day. The cell loss factor was φ? 17% during exponential tumor growth and increased to about 100% between the tenth and twelfth day. The agreement of the cell kinetic data determined by autoradiography from solid tumours in vivo (PLM, continuous labelling) and autoradiography as well as pulse cytophotometry from in vitro experiments (excised material) was satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号