首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
CfGSr基因克隆于加拿大森林害虫云杉蚜虫的幼虫基因组。研究CfGST转基因拟南芥表型特征,以及低温条件下叶肉细胞超微结构与存活率。结果表明,与野生型拟南芥相比,CfGSr转基因拟南芥的茎粗、叶宽,植株高度、分枝数、荚果数皆降低,生长速度减慢。低温(5±1)℃处理后,转基因拟南芥叶片的叶绿体和线粒体膜结构完整清晰,存活率提高25.14%。  相似文献   

2.
CfGST基因克隆于加拿大森林害虫云杉蚜虫的幼虫基因组.研究CfGST转基因拟南芥表型特征,以及低温条件下叶肉细胞超微结构与存活率.结果表明,与野生型拟南芥相比,CfGST转基因拟南芥的茎粗、叶宽,植株高度、分枝数、荚果数皆降低,生长速度减慢.低温(5±1)℃处理后,转基因拟南芥叶片的叶绿体和线粒体膜结构完整清晰,存活率提高25.14%.  相似文献   

3.
转拟南芥ICE1基因增强烟草抗寒性的研究   总被引:3,自引:0,他引:3  
ICE1是CBF冷响应通道的上游转录调控因子,通过与CBF启动子中MYC顺式作用元件的结合激活CBF3基因表达.采用RT-PCR方法,从拟南芥获得AtICE1基因,将AtICE1导入pCAMBIA1301构建35S:AtICE1植物表达载体.通过根癌农杆菌GV3101,将AtICE1基因导人烟草,T1代植株经潮霉素抗性筛选,PCR、RT-PCR检测,结果表明AtICE1基因已经整合到烟草基因组中,并在转录水平表达;在正常生长条件下,转基因烟草与对照烟草的生长未见明显区别,而在瞬时低温冻害下,转基因烟草存活率明显高于对照烟草植株,说明Atl-CEI基因可以提高低温敏感作物的耐寒性.  相似文献   

4.
拟南芥中COR基因的启动子含有CRT/DRE元件,转录激活因子CBF蛋白与之结合,促进COR基因的表达.CBF基因超表达不需要低温刺激就能促进COR基因的表达而增加植物的抗寒性,显示其调节COR基因表达的能力.作者对CBF基因和CBF蛋白的特性、CBF基因表达与植物抗寒性之间的关系以及CBF调节COR基因表达的机理进行了介绍.  相似文献   

5.
采用不同剂量的UV-B辐射处理4周龄的野生型拟南芥幼苗(Columbia-0),分别采用丙酮沉淀法和TCA-丙酮法提取其叶肉细胞中的蛋白质,进而研究分析拟南芥叶肉细胞中蛋白质的含量与组成对不同强度UV-B辐射的响应。结果显示,两种方法相比较,TCA-丙酮法所提取得到的蛋白含量相对较多,更适合于分析增强UV-B辐射对拟南芥叶肉细胞蛋白质的影响;而两种方法所提取得到的蛋白质含量的变化趋势相同,随着UV-B辐射剂量的增加,蛋白质含量呈先增加后减少的趋势,B2组达到了最大。此外,蛋白条带的数目和表达量也都发生了显著变化,同样也是以中剂量处理组(B2组)变化最为明显,既有新增条带,又有消失条带。这可能是由于拟南芥在受到低剂量的UV-B辐射时,可以激活自身一些抗性基因的表达而诱导产生抗性蛋白,进而抵御UV-B的伤害;而当受到高剂量的UV-B辐射时,损伤自身的蛋白质合成途径,影响蛋白的合成。  相似文献   

6.
拟南芥叶肉原生质体分离条件的优化研究   总被引:4,自引:0,他引:4  
以野生型拟南芥(Arabidopsis thaliana,ecotype Columbia)无菌苗为材料,研究了叶肉原生质体分离过程中的预处理条件、酶解方式、酶解温度和离心力大小等因素对产量和活力的影响.结果表明,酶解方式和酶解温度对原生质体产量影响显著,28℃静置酶解14 h能够将原生质体产量提高6.32倍.低温预处理和离心力大小对原生质体活力影响显著,4℃低温预处理24 h能够将原生质体活力提高55%.适宜拟南芥原生质体叶肉细胞分离的最佳条件为:4℃低温预处理24 h,28℃静置酶解14 h,600 r·min-1离心3次,每次10 min,得到的原生质体产量为2.91×106个·g-1,活力为84.03%.  相似文献   

7.
拟南芥苗端发育的超微结构研究   总被引:3,自引:0,他引:3  
应用高压冷冻及低温脱水电镜技术研究了拟南芥苗端的发生,发育过程。结果表明,苗端发育过程可分为两个阶段,营养苗端和生殖苗端。其中,营养苗端的发育分为二个时期;早期,生长点平均,其结构不形成被子植物苗端所特有的原套一原体结构,后期,生长点隆起,其内部形成典型的原套一原体及组织分区结构。  相似文献   

8.
以野生型拟南芥的第5~8片叶子为材料,在酶解液浓度和酶解时间相同的条件下,探讨不同苗龄、取材部位、离心条件对原生质体得率和质量影响。结果表明:室内土培3~4周的拟南芥,取中部叶片,以离心力为40~60×g,升速档为1得到的原生质体得率和质量最佳。  相似文献   

9.
拟南芥中COR基因的启动子含有CRT/DRE元件,转录激活因子CBF蛋白与之结合,促进COR基因的表达,CBF基因超表达不需要低温刺激就能促进COR基因的表达而增加植物的抗寒性,显示其调节COR基因表达的能力,作者对CBF基因和CBF蛋白的特性,CBF基因表达与植物抗寒性之间的关系以及CBF调节COR基因表达的机理进行了介绍。  相似文献   

10.
转AhNCED1基因拟南芥的形态特征和抗旱性研究   总被引:1,自引:0,他引:1  
目的:探讨外源基因花生NCED1(AhNCED1)对拟南芥的形态特征和抗旱能力的影响。方法:观察转AhNCED1拟南芥的表型特征以及在干旱条件下的变化,利用扫描电镜观察植株叶上表面细胞和气孔大小。结果:与野生型相比,AhNCED1转基因植株矮壮,株型紧凑,分蘖和分枝数减少,幼苗根发育好。在干旱条件下转基因型植株叶大色绿,气孔开度减小,表皮细胞排列紧密。结论:转基因型植株在干旱条件下的表型特征与抗旱能力表明转基因拟南芥抗旱能力高于野生型。  相似文献   

11.
卢阳  龙鸿 《植物学报》2015,50(3):331-336
拟南芥(Arabidopsis thaliana)的营养生长可以分为2个阶段: 幼龄期与成熟期。由幼龄期向成熟期的转变(VPC)与叶片的形态学特征、茎顶端分生组织(SAM)形状、远轴面表皮毛的出现以及SPL家族转录因子表达水平的变化相关。研究表明, 造成这种转变的信号来源于叶原基。该研究利用2种莲座叶数目改变了的突变体和对野生型切除叶片的方法, 分析了叶片数目对VPC的影响。结果表明, 莲座叶数目的减少推迟了VPC的发生; 而莲座叶数目增多突变体amp1-1并未使VPC的发生提前, 推测叶源信号的产生受到了光合作用的影响。  相似文献   

12.
We report eight new mutants in Arabidopsis thaliana possessing altered leaf morphology and epicuticular wax. These were isolated from a T-DNA-mutagenized population using a visual screen for altered leaf reflectance, i.e. increased glaucousness or glossiness. The mutants were placed into three distinct classes based on alterations in overall plant morphology: knobhead (knb), bicentifolia (bcf), and wax. The four knb mutants formed callus-like growths in the axillary region of the rosette leaves and apical meristem, the two bcf mutants produced hundreds of narrow leaves, and the two wax mutants had leaves and stems that were more glossy than wild type and organs that fused during early development. Leaves of knb and bcf were more glaucous and abnormally shaped than wild type. Epicuticular wax crystals over knb and bcf leaf surfaces (where none were present on wild type) likely contributed to their more glaucous appearance. In contrast, the glossy appearance of the wax mutants was associated with a reduced epicuticular wax load on both leaves and stems. One representative from each phenotypic class was selected for detailed analyses of epicuticular wax chemistry. All three lines, knb1, bcf1, and wax1, had dramatic alterations in the total amounts and relative proportions of their leaf epicuticular wax constituents.  相似文献   

13.
Laudert D  Schaller F  Weiler EW 《Planta》2000,211(1):163-165
 Allene oxide synthase (AOS), encoded by a single gene in Arabidopsis thaliana (L.) Heynh., catalyzes the first step specific to the octadecanoid pathway. Enzyme activity is very low in control plants, but is upregulated by wounding, octadecanoids, ethylene, salicylate and coronatine (D. Laudert and E.W. Weiler, 1998, Plant J 15: 675–684). In order to study the consequences of constitutive expression of AOS on the level of jasmonates, a complete cDNA encoding the enzyme from A. thaliana was constitutively expressed in both  A. thaliana and tobacco (Nicotiana tabacum L.). Overexpression of AOS did not alter the basal level of jasmonic acid; thus, output of the jasmonate pathway in the unchallenged plant appears to be strictly limited by substrate availability. In wounded plants overexpressing AOS, peak jasmonate levels were 2- to 3-fold higher compared to untransformed plants. More importantly, the transgenic plants reached the maximum jasmonate levels significantly earlier than wounded untransformed control plants. These findings suggest that overexpression of AOS might be a way of controlling defense dynamics in higher plants. Received: 10 February 2000 / Accepted: 11 March 2000  相似文献   

14.
For the further optimization of antibody expression in plants,it is essential to determine the final accumulation sites ofplant-made antibodies. Previously, we have shown that, uponsecretion, IgG antibodies and Fab fragments can be detectedin the intercellular spaces of leaf mesophyil cells of transgenicArabidopsis thaliana plants. However, immunofluorescence microscopyshowed that this is probably not their final accumulation site.In leaves, IgG and Fabfragments accumulate also at the interiorside of the epidermal cell layers and in xylem vessels. Theseaccumulation sites correspond with the leaf regions where waterof the transpiration stream is entering a space impermeableto the proteins or where water is evaporating. In roots, plant-madeFab fragments accumulate in intercellular spaces of cortex cells,in the cytoplasm of pericycle and, to a lesser extent, endodermiscells, and in cells of the vascular cylinder. In other words,antibody accumulation occurs at the sites where water passeson its radial pathway towards and within the vascular bundle.Taken together, our results suggest that, upon secretion ofplant-made antibodies or Fab fragments, a large proportion ofthese proteins are transported in the apoplast of A. thaliana,possibly by the water flow in the transpiration stream. 4Corresponding author. Fax 32-9-2645349; e-mail: anpic{at}gengenp.rug.ac.be  相似文献   

15.
Nitrilase (E.C. 3.5.5.1) cloned from Arabidopsis thaliana converts indole-3-acetonitrile to the plant growth hormone, indole-3-acetic acid in vitro. To probe the capacity of this enzyme under physiological conditions in vivo, the cDNA PM255, encoding nitrilase II, was stably integrated into the genome of Nicotiana tabacum by direct protoplast transformation under the control of the CaMV-35S promotor. The regenerated plants appeared phenotypically normal. Nitrilase II was expressed, based on the occurrence of its mRNA and polypeptide. The enzyme was catalytically active, when extracted from leaf tissue of transgenic plants (specific activity: 25 fkat mg?1 protein with indole3-acetonitrile as substrate). This level of activity was lower than that found in A. thaliana, and this was deemed essential for the in vivo analysis. Leaf tissue from the transgenic plants converted 1-[13C]-indole-3-acetonitrile to 1-[13C]-indole-3-acetic acid in vivo as determined by HPLC/ GC-MS analysis. Untransformed tobacco was unable to catalyze this reaction. When transgenic seeds were grown on medium in the absence of indole-3-acetonitrile, germination and seedling growth appeared normal. In the presence of micromolar levels of exogenous indole-3-acetonitrile, a strong auxin-overproducing phenotype developed resulting in increased lateral root formation (at 10 µM indole-3-acetonitrile) or stunted shoot growth, excessive lateral root initiation, inhibition of root out-growth and callus formation at the root/shoot interface (at 100 µM indole-3-acetonitrile). Collectively, these data prove the ability of nitrilase II to convert low micromolar levels of indole-3-acetonitrile to indole-3-acetic acid in vivo, even when expressed at subphysiological levels thereby conferring a high-auxin phenotype upon transgenic plants. Thus, the A. thaliana nitrilase activity, which exceeds that of the transgenic plants, would be sufficient to meet the requirements for auxin biosynthesis in vivo.  相似文献   

16.
Polyclonal antisera against a fusion protein of β-galactosidase and the 20 C-terminal amino acids of the Arabidopsis thaliana sucrose carrier AtSUC2 were used to determine the cellular localization of the AtSUC2 protein. Using fluorescence-labelling on sections from different organs of Arabidopsis the AtSUC2 protein was immunolocalized exclusively in companion cells. The presented data indicate that phloem loading in Arabidopsis may be catalyzed by the AtSUC2 sucrose carrier which transports sucrose into the companion cells. No evidence for a participation of the second Arabidopsis sucrose transporter AtSUC1 has been obtained.  相似文献   

17.
18.
The three-dimensional quantitative leaf anatomy in developingyoung (9–22 d) first leaves of wild type Arabidopsis thalianacv. Landsberg erecta from mitosis through cell and leaf expansionto the cessation of lamina growth has been studied. The domainsof cell division, the relative proportion of the cell typespresent during development and the production of intercellularspace in the developing leaf have been determined by image analysisof entire leaves sectioned in three planes. Mitotic activityoccurs throughout the youngest leaves prior to unfolding andcell expansion is initiated firstly at the leaf tip with a persistentzone of mitotic cells at the leaf base resulting in a gradientof development along the leaf axis, which persists in the olderleaves. Major anatomical changes which occur during the developmentare, a rapid increase in mesophyll volume, an increase in thevein network, and expansion of the intercellular spaces. Thepattern of cell expansion results in a 10-fold variation inmesophyll cell size in mature leaves. In the youngest leavesthe plan area of mesophyll cells varies between 100 µm2and 400 µm2 whereas in mature leaves mesophyll cells rangein plan area from 800 µm2 to 9500 µm2. The volumesof mesophyll tissue and airspace under unit leaf area increase3-fold and 35-fold, respectively, during leaf expansion. Thevolume proportions of tissue types mesophyll:airspace:epiderrnal:vascularin the mature leaf are 61:26:12:1, respectively. This studyprovides comparative information for future identification andanalysis of leaf development mutants of Arabidopsis thaliana. Key words: Arabidopsis, quantitative leaf anatomy, leaf expansion, image analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号