首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas sp. strain MT1 is capable of degrading 4- and 5-chlorosalicylates via 4-chlorocatechol, 3-chloromuconate, and maleylacetate by a novel pathway. 3-Chloromuconate is transformed by muconate cycloisomerase of MT1 into protoanemonin, a dominant reaction product, as previously shown for other muconate cycloisomerases. However, kinetic data indicate that the muconate cycloisomerase of MT1 is specialized for 3-chloromuconate conversion and is not able to form cis-dienelactone. Protoanemonin is obviously a dead-end product of the pathway. A trans-dienelactone hydrolase (trans-DLH) was induced during growth on chlorosalicylates. Even though the purified enzyme did not act on either 3-chloromuconate or protoanemonin, the presence of muconate cylcoisomerase and trans-DLH together resulted in considerably lower protoanemonin concentrations but larger amounts of maleylacetate formed from 3-chloromuconate than the presence of muconate cycloisomerase alone resulted in. As trans-DLH also acts on 4-fluoromuconolactone, forming maleylacetate, we suggest that this enzyme acts on 4-chloromuconolactone as an intermediate in the muconate cycloisomerase-catalyzed transformation of 3-chloromuconate, thus preventing protoanemonin formation and favoring maleylacetate formation. The maleylacetate formed in this way is reduced by maleylacetate reductase. Chlorosalicylate degradation in MT1 thus occurs by a new pathway consisting of a patchwork of reactions catalyzed by enzymes from the 3-oxoadipate pathway (catechol 1,2-dioxygenase, muconate cycloisomerase) and the chlorocatechol pathway (maleylacetate reductase) and a trans-DLH.  相似文献   

2.
Pseudomonas aeruginosa RW41 is the first bacterial strain, which could be isolated by virtue of its capability to mineralize 4-chlorobenzenesulfonic acid (4CBSA), the major polar by-product of the chemical synthesis of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT). This capability makes the isolate a promising candidate for the development of bioremediation technologies. The bacterial mineralization of 4CBSA proceeds under oxygenolytic desulfonation and transient accumulation of sulfite which then is oxidized to sulfate. High enzyme activities for the turnover of 4-chlorocatechol were measured. The further catabolism proceeded through 3-chloromuconate and, probably, the instable 4-chloromuconolactone, which is directly hydrolyzed to maleylacetate. Detectable levels of maleylacetate reductase were only present when cells were grown with 4CBSA. When the ordinary catechol pathway was induced during growth on benzenesulfonate, catechol was ortho-cleaved to cis,cis-muconate and a partially purified muconate cycloisomerase transformed it to muconolactone in vitro. The same enzyme transformed 3-chloro-cis,cis-muconate into cis-dienelactone (76%) and the antibiotically active protoanemonin (24%). These observations are indicative for a not yet highly evolved catabolism for halogenated substrates by bacterial isolates from environmental samples which, on the other hand, are able to productively recycle sulfur and chloride ions from synthetic haloorganosulfonates.  相似文献   

3.
The 4-chloro- and 2,4-dichlorophenol-degrading strain Rhodococcus opacus 1CP has previously been shown to acquire, during prolonged adaptation, the ability to mineralize 2-chlorophenol. In addition, homogeneous chlorocatechol 1,2-dioxygenase from 2-chlorophenol-grown biomass has shown relatively high activity towards 3-chlorocatechol. Based on sequences of the N terminus and tryptic peptides of this enzyme, degenerate PCR primers were now designed and used for cloning of the respective gene from genomic DNA of strain 1CP. A 9.5-kb fragment containing nine open reading frames was obtained on pROP1. Besides other genes, a gene cluster consisting of four chlorocatechol catabolic genes was identified. As judged by sequence similarity and correspondence of predicted N termini with those of purified enzymes, the open reading frames correspond to genes for a second chlorocatechol 1,2-dioxygenase (ClcA2), a second chloromuconate cycloisomerase (ClcB2), a second dienelactone hydrolase (ClcD2), and a muconolactone isomerase-related enzyme (ClcF). All enzymes of this new cluster are only distantly related to the known chlorocatechol enzymes and appear to represent new evolutionary lines of these activities. UV overlay spectra as well as high-pressure liquid chromatography analyses confirmed that 2-chloro-cis,cis-muconate is transformed by ClcB2 to 5-chloromuconolactone, which during turnover by ClcF gives cis-dienelactone as the sole product. cis-Dienelactone was further hydrolyzed by ClcD2 to maleylacetate. ClcF, despite its sequence similarity to muconolactone isomerases, no longer showed muconolactone-isomerizing activity and thus represents an enzyme dedicated to its new function as a 5-chloromuconolactone dehalogenase. Thus, during 3-chlorocatechol degradation by R. opacus 1CP, dechlorination is catalyzed by a muconolactone isomerase-related enzyme rather than by a specialized chloromuconate cycloisomerase.  相似文献   

4.
The Arabidopsis thaliana open reading frame At4g20960 predicts a protein whose N-terminal part is similar to the eubacterial 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate deaminase domain. A synthetic open reading frame specifying a pseudomature form of the plant enzyme directed the synthesis of a recombinant protein which was purified to apparent homogeneity and was shown by NMR spectroscopy to convert 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate into 5-amino-6-ribosylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate at a rate of 0.9 micromol mg(-1) min(-1). The substrate and product of the enzyme are both subject to spontaneous anomerization of the ribosyl side chain as shown by (13)C NMR spectroscopy. The protein contains 1 eq of Zn(2+)/subunit. The deaminase activity could be assigned to the N-terminal section of the plant protein. The deaminase domains of plants and eubacteria share a high degree of similarity, in contrast to deaminases from fungi. These data show that the riboflavin biosynthesis in plants proceeds by the same reaction steps as in eubacteria, whereas fungi use a different pathway.  相似文献   

5.
The nonamer 5'd(CTCAGCCTC) 3' 1 has been reacted with cis-diamminediaquaplatinum(II) in water at pH 4.2. The major reaction product was shown by enzymatic digestion and 1H NMR to be the d(ApG)cis-Pt(NH3)2 chelate [cis-Pt(NH3)2[d(CTCAGCCTC)-N7(4),N7(5)]] 1-Pt. When mixed with its complementary strand 2, 1-Pt forms a B DNA type duplex 3-Pt with a Tm of 35 degrees C (versus 58 degrees C for the unplatinated duplex). The NMR study of the exchangeable protons of 3-Pt revealed that the helix distortion is localized on the CA*G*-CTG moiety (the asterisks indicating the platinum chelation sites) with a strong perturbation of the A*(4)T(15) base pair related to a large tilt of A*(4).  相似文献   

6.
2,4-Dichlorophenoxyacetate (2,4-D) in Alcaligenes eutrophus JMP134 (pJP4) is degraded via 2-chloromaleylacetate as an intermediate. The latter compound was found to be reduced by NADH in a maleylacetate reductase catalyzed reaction. Maleylacetate and chloride were formed as products of 2-chloromaleylacetate reduction, the former being funnelled into the 3-oxoadipate pathway by a second reductive step. There was no indication for an involvement of a pJP4-encoded enzyme in either the reduction or the dechlorination reaction.Abbreviations 2,4-D 2,4-dichlorophenoxyacetate  相似文献   

7.
Egelund J  Damager I  Faber K  Olsen CE  Ulvskov P  Petersen BL 《FEBS letters》2008,582(21-22):3217-3222
An Arabidopsis thaliana gene, At1g56550, was expressed in Pichia pastoris and the recombinant protein was shown to catalyse transfer of d-xylose from UDP-alpha-d-xylose onto methyl alpha-l-fucoside. The product formed was shown by 1D and 2D (1)H NMR spectroscopy to be Me alpha-d-Xyl-(1,3)-alpha-l-Fuc, which is identical to the proposed target structure in the A-chain of rhamnogalacturonan II. Chemically synthesized methyl l-fucosides derivatized by methyl groups on either the 2-, 3- or 4 position were tested as acceptor substrates but only methyl 4-O-methyl-alpha-l-fucopyranoside acted as an acceptor, although to a lesser extent than methyl alpha-l-fucoside. At1g56550 is suggested to encode a rhamnogalacturonan II specific xylosyltransferase.  相似文献   

8.
The biochemical pathways followed by a mixed bacterial culture and one of its constituent strains, Sarcina maxima, MTCC 5216 (hitherto unreported) during the degradation of mononitrophenol isomers was studied using extensive nuclear magnetic resonance (NMR) spectroscopy (One- and Two-Dimensional Heteronuclear Multiple Quantum Coherence Transfer-2D HMQCT NMR). NMR investigations revealed that o-nitrophenol (ONP) could be degraded by the consortium to metabolites such as catechol, cis, cis-muconic acid, γ-hydroxymuconic semialdehyde, maleylacetate and β-ketoadipate. The spectra of ONP reaction mixture degraded by S.␣maxima showed that formation of maleylacetate from γ-hydroxymuconic semialdehyde should go through a new metabolite γ-hydroxymaleylacetate, hitherto unreported. The consortium could breakdown m-nitrophenol (MNP) to 4-aminocatechol indicating that it came from 3-hydroxyaminophenol. However, S. maxima MTCC 5216, could convert MNP to hitherto unreported 2-nitrohydroquinone and the subsequent 2-hydroxylaminohydroquinone to 1,2,4-benzenetriol along with γ-hydroxymuconic semialdehyde, muconolactone and maleylacetate. The pathway followed by the consortium during p-nitrophenol (PNP) degradation was by the formation of 4-nitrocatechol, maleylacetate and β-ketoadipate. PNP reaction mixture of S.␣maxima, MTCC 5216 on the other hand, showed that the pathway could proceed through the formation of p-hydroquinone as the initial metabolite. The present study conclusively established the nitrophenol-degrading ability of both the consortium and S. maxima MTCC 5216, including exhibiting slight deviations from the pathways followed by the other reported microorganisms.  相似文献   

9.
A revised purification of acetopyruvate hydrolase from orcinol-grown Pseudomonas putida ORC is described. This carbon-carbon bond hydrolase, which is the last inducible enzyme of the orcinol catabolic pathway, is monomeric with a molecular size of approximately 38 kDa; it hydrolyzes acetopyruvate to equimolar quantities of acetate and pyruvate. We have previously described the aqueous-solution structures of acetopyruvate at pH 7.5 and several synthesized analogues by (1)H-nuclear magnetic resonance (NMR)-Fourier transform (FT) experiments. Three (1)H signals (2.2 to 2.4 ppm) of the methyl group are assigned unambiguously to the carboxylate anions of 2,4-diketo, 2-enol-4-keto, and 2-hydrate-4-keto forms (40:50:10). A (1)H-NMR assay for acetopyruvate hydrolase was used to study the kinetics and stoichiometries of reactions within a single reaction mixture (0.7 ml) by monitoring the three methyl-group signals of acetopyruvate and of the products acetate and pyruvate. Examination of 4-tert-butyl-2,4-diketobutanoate hydrolysis by the same method allowed the conclusion that it is the carboxylate 2-enol form(s) or carbanion(s) that is the actual substrate(s) of hydrolysis. Substrate analogues of 2,4-diketobutanoate with 4-phenyl or 4-benzyl groups are very poor substrates for the enzyme, whereas the 4-cyclohexyl analogue is readily hydrolyzed. In aqueous solution, the arene analogues do not form a stable 2-enol structure but exist principally as a delocalized pi-electron system in conjugation with the aromatic ring. The effects of several divalent metal ions on solution structures were studied, and a tentative conclusion that the enol forms are coordinated to Mg(2+) bound to the enzyme was made. (1)H-(2)H exchange reactions showed the complete, fast equilibration of (2)H into the C-3 of acetopyruvate chemically; this accounts for the appearance of (2)H in the product pyruvate. The C-3 of the product pyruvate was similarly labelled, but this exchange was only enzyme catalyzed; the methyl group of acetate did not undergo an exchange reaction. The unexpected preference for bulky 4-alkyl-group analogues is discussed in an evolutionary context for carbon-carbon bond hydrolases. Routine one-dimensional (1)H-NMR in normal (1)H(2)O is a new method for rapid, noninvasive assays of enzymic activities to obtain the kinetics and stoichiometries of reactions in single reaction mixtures. Assessments of the solution structures of both substrates and products are also shown.  相似文献   

10.
Y S Yang  P A Frey 《Biochemistry》1986,25(25):8173-8178
The dihydrolipoyl transacetylase component (E2) of the pyruvate dehydrogenase complex catalyzes the reaction of acetyl coenzyme A (acetyl-CoA) with dihydrolipoamide, producing coenzyme A and S-acetyldihydrolipoamide. The acetyl group is shown by experiments reported herein to be bonded to S8 in the enzymatic product. 1H NMR analysis of synthetic samples of both structural isomers of S-acetyl-S-(phenylmercurio)dihydrolipoamide enabled structural assignments to be made. Reaction of 8-S-acetyl-6-S-(phenylmercurio)dihydrolipoamide with 3-mercaptopropionic acid in chloroform produced 8-S-acetyldihydrolipoamide which contained a small amount (5%) of the 6-S isomer. Reaction of 6,8-di-S-acetyldihydrolipoamide with NH2OH produced a 4:1 mixture of 6-S-acetyldihydrolipoamide and the 8-S isomer. These compounds did not isomerize at significant rates in chloroform but rapidly isomerized to the equilibrium mixture in aqueous solution (Keq = 3.4). The second-order rate constants for the hydroxide-catalyzed isomerization were found to be kf = (1.15 +/- 0.07) X 10(6) M-1 X s-1 and kr = (3.36 +/- 0.20) X 10(5) M-1 X s-1 in the direction of the formation of the 8-S isomer. The enzymatic product was trapped by addition of phenylmercuric hydroxide within 15 s-30 min after starting the reaction. 1H NMR analysis of the products obtained at various times showed that the enzymatic product was 8-S-acetyldihydrolipoamide, which underwent progressive isomerization to the mixture of isomers within a few minutes. In the reaction of acetyl-CoA with dihydrolipoamide, the latter substrate reacts in place of enzyme-bound dihydrolipoyl moieties. Therefore, acetylation occurs at the 8-S position of bound lipoyl groups.  相似文献   

11.
S H Hwang  T Nowak 《Biochemistry》1986,25(19):5590-5595
The stereochemistry of the carboxylation of phosphoenolpyruvate to yield oxalacetate, catalyzed by chicken liver phosphoenolpyruvate carboxykinase and by Ascaris muscle phosphoenolpyruvate carboxykinase, was determined. The substrate (Z)-3-fluorophosphoenolpyruvate was used for the stereochemical analysis. The carboxylation reaction was coupled to malate dehydrogenase to yield 3-fluoromalate, and the stereochemistry of the products was identified by 19F NMR. In separate experiments, the enantiomeric tautomers of 3-fluorooxalacetate were shown to be utilized by malate dehydrogenase to yield (2R,3R)- and (2R,3S)-3-fluoromalate in nearly identical amounts. The products were identified by 19F NMR. When (Z)-3-fluorophosphoenolpyruvate was used as a substrate for phosphoenolpyruvate carboxykinase from avian liver and from Ascaris, and malate dehydrogenase was used to trap the product, only a single diastereomer was observed. This product was shown to be (2R,3R)-3-fluoromalate in each case. The assignments were based on coupling constants taken from Keck et al. [Keck, R., Hess, H., & Rétey, J. (1980) FEBS Lett. 114, 287]. These results indicate that the stereochemistry of carboxylation, catalyzed by chicken phosphoenolpyruvate carboxykinase and by Ascaris phosphoenolpyruvate carboxykinase, is identical and takes place from the si side of the enzyme-bound phosphoenolpyruvate. The carboxylation reaction was run both in H2O and in D2O. No deuterium incorporation into fluoromalate was shown to occur. The product 3-fluorooxalacetate is thus released from phosphoenolpyruvate carboxykinase as the keto form and is reduced more rapidly by reduced nicotinamide adenine dinucleotide with malate dehydrogenase than by the occurrence of tautomerization.  相似文献   

12.
Muconate cycloisomerases are known to catalyze the reversible conversion of 2-chloro-cis,cis-muconate by 1,4- and 3,6-cycloisomerization into (4S)-(+)-2-chloro- and (4R/5S)-(+)-5-chloromuconolactone. 2-Chloromuconolactone is transformed by muconolactone isomerase with concomitant dechlorination and decarboxylation into the antibiotic protoanemonin. The low k(cat) for this compound compared to that for 5-chloromuconolactone suggests that protoanemonin formation is of minor importance. However, since 2-chloromuconolactone is the initially predominant product of 2-chloromuconate cycloisomerization, significant amounts of protoanemonin were formed in reaction mixtures containing large amounts of muconolactone isomerase and small amounts of muconate cycloisomerase. Such enzyme ratios resemble those observed in cell extracts of benzoate-grown cells of Ralstonia eutropha JMP134. In contrast, cis-dienelactone was the predominant product formed by enzyme preparations, in which muconolactone isomerase was in vitro rate limiting. In reaction mixtures containing chloromuconate cycloisomerase and muconolactone isomerase, only minute amounts of protoanemonin were detected, indicating that only small amounts of 2-chloromuconolactone were formed by cycloisomerization and that chloromuconate cycloisomerase actually preferentially catalyzes a 3,6-cycloisomerization.  相似文献   

13.
Chloromuconate cycloisomerases of bacteria utilizing chloroaromatic compounds are known to convert 3-chloro-cis,cis-muconate to cis-dienelactone (cis-4-carboxymethylenebut-2-en-4-olide), while usual muconate cycloisomerases transform the same substrate to the bacteriotoxic protoanemonin. Formation of protoanemonin requires that the cycloisomerization of 3-chloro-cis,cis-muconate to 4-chloromuconolactone is completed by protonation of the exocyclic carbon of the presumed enol/enolate intermediate before chloride elimination and decarboxylation take place to yield the final product. The formation of cis-dienelactone, in contrast, could occur either by dehydrohalogenation of 4-chloromuconolactone or, more directly, by chloride elimination from the enol/enolate intermediate. To reach a better understanding of the mechanisms of chloride elimination, the proton-donating Lys169 of Pseudomonas putida muconate cycloisomerase was changed to alanine. As expected, substrates requiring protonation, such as cis,cis-muconate as well as 2- and 3-methyl-, 3-fluoro-, and 2-chloro-cis,cis-muconate, were not converted at a significant rate by the K169A variant. However, the variant was still active with 3-chloro- and 2,4-dichloro-cis,cis-muconate. Interestingly, cis-dienelactone and 2-chloro-cis-dienelactone were formed as products, whereas the wild-type enzyme forms protoanemonin and the not previously isolated 2-chloroprotoanemonin, respectively. Thus, the chloromuconate cycloisomerases may avoid (chloro-)protoanemonin formation by increasing the rate of chloride abstraction from the enol/enolate intermediate compared to that of proton addition to it.  相似文献   

14.
Zea mays was incubated with the natural phytotoxin benzoxazolin-2(3H)-one (BOA) to investigate the detoxification process. A hitherto unknown detoxification product, 1-(2-hydroxyphenylamino)-1-deoxy-beta-gentiobioside 1,2-carbamate (3), was isolated and identified. A reinvestigation of known BOA detoxification products by NMR methods led to the finding that the structure of benzoxazolin-2(3H)-one-N-beta-glucoside (1) first reported from Avena sativa has to be revised. In fact, the correct structure is that of the isomeric 1-(2-hydroxyphenylamino)-1-deoxy-beta-glucoside 1,2-carbamate 2, which is structurally related to 3. It was now shown with a synthetic mixture of 1 and 2 that 1 underwent spontaneous isomerization to form 2 in solution. Thus, N-glucosylation of BOA in the plant led finally to the carbamate 2. In contrast to BOA-6-O-glucosylation, BOA-induced N-glucosylation appears first after 6-8 h of incubation. As soon as N-glucosylation is possible, BOA-6-O-glucoside is not further accumulated, whereas the amount of glucoside carbamate increases continuously during the next 40 h. Synthesis of gentiobioside carbamate seems to be a late event in BOA detoxification. All detoxification products are released into the environment via root exudation.  相似文献   

15.
Structural characterization of nitrimyoglobin   总被引:1,自引:0,他引:1  
Nitrimyoglobin was formed in greater than 94% yield by a simple reaction between excess nitrite and horse heart metmyoglobin at pH 5.5. This dark green pigment was shown by 1H NMR spectroscopy to be a single, pure product with a well defined tertiary structure that is highly similar to the starting myoglobin. Electronic spin states parallel those of myoglobin, although the relaxation times differ. Ligand binding reactions of nitrimyoglobin parallel those of normal myoglobin, but lead to a unique series of UV-visible spectra. In the ferrous state, nitrimyoglobin reversibly binds O2 with half-saturation of sites at an O2 partial pressure of 10.4 +/- 1.4 mm Hg. 1H NMR data indicate that the altered heme of nitrimyoglobin has not undergone reaction at any meso proton position, nor has it been partially saturated to the level of a chlorin. 15N NMR spectra indicate that only a single nitrogen was added to the protein as a nitro group. Extraction of the modified heme from nitrimyoglobin and spectroscopic characterization of the nitriheme by infrared spectroscopy and of the free base porphyrin methyl ester derived from nitriheme by 1H NMR indicate that the modification is regiospecific. The heme in nitrimyoglobin is 3-(trans-2-nitrovinyl)-2,7,12,18-tetramethyl-8-vinylporphyrin-13,1 7-dipropionic acid. In the Fisher nomenclature scheme, the 2-vinyl substituent is the site of modification and has been converted to a nitrovinyl group by substitution of a proton by -NO2.  相似文献   

16.
Two strains of Pseudomonas putida isolated by enrichment cultures with orcinol as the sole source of carbon were both found to grow with resorcinol. Data are presented which show that one strain (ORC) catabolizes resorcinol by a metabolic pathway, genetically and mechanistically distinct from the orcinol pathway, via hydroxyquinol and ortho oxygenative cleavage to give maleylacetate, but that the other strain (O1) yields mutants that utilize resorcinol. One mutant strain, designated O1OC, was shown to be constitutive for the enzymes of the orcinol pathway. After growth of this strain on resorcinol, two enzymes of the resorcinol pathway are also induced, namely hydroxyquinol 1,2-oxygenase and maleylacetate reductase. Thus hydroxyquniol, formed from resorcinol, undergoes both ortho and meta diol cleavage reactions with the subsequent formation of both pyruvate and maleylacetate. Evidence was not obtained for the expression of resorcinol hydroxylase in strain O1OC; the activity of orcinol hydroxylase appears to be recruited for this hydroxylation reaction. P. putida ORC, on the other hand, possesses individual hydroxylases for orcinol and resorcinol, which are specifically induced by growth on their respective substrates. The spectral changes associated with the enzymic and nonenzymic oxidation of hydroxyquinol are described. Maleylacetate was identified as the product of hydroxyquinol oxidation by partially purified extracts obtained from P. putida ORC grown with resorcinol. Its further metabolism was reduced nicotinamide adenine dinucleotide dependent.  相似文献   

17.
The primary structure of the O-antigen of Escherichia coli O116:K+:H10 was shown by monosaccharide analysis, a partial hydrolysis study and by 1D and 2D 1H and 13C NMR spectroscopy to be composed of linear pentasaccharide repeating units with the structure: -->6)-alpha-D-GlcpNAc-(1-->4)-alpha-D-GalpNAc-(1-->4)-alpha-D-GalpA++ +-(1-->3)- beta-D-GlcpNAc-(1-->2)-beta-D-Quip4NAc-(1-->.  相似文献   

18.
The reaction of gold(III) chloride with several 1,4-benzodiazepin-2-ones, L, gives 1:1 adducts, (L)AuCl3*, which were characterized by IR, Raman and 1H NMR spectroscopy. In the title compound the coordination of the ligand, ascertained through a X-ray structure determination, was shown to occur through the 4-nitrogen atom.  相似文献   

19.
Maleylacetate reductase (EC 1.3.1.32) plays a major role in the degradation of chloroaromatic compounds by channeling maleylacetate and some of its substituted derivatives into the 3-oxoadipate pathway. The enzyme was purified to apparent homogeneity from an extract of 2,4-dichlorophenoxyacetate (2,4-D)-grown cells of Alcaligenes eutrophus JMP134. Maleylacetate reductase appears to be a dimer of two identical subunits of 35 kDa. The pI was determined to be at pH 5.4. There was no indication of a flavin prosthetic group. The enzyme was inactivated by p-chloromercuribenzoate but not by EDTA, 1,10-phenanthroline, or dithiothreitol. Maleylacetate and 2-chloromaleylacetate were converted with similar efficiencies (with NADH as cosubstrate, Km = 31 microM for each substrate and kcat = 8,785 and 7,280/min, respectively). NADH was preferred to NADPH as the cosubstrate. Upon reduction of 2-chloramaleylacetate by the purified enzyme, chloride was liberated and the resulting maleylacetate was further reduced by a second NADH. These results and the kinetic parameters suggest that the maleylacetate reductase is sufficient to channel the 2,4-D degradation intermediate 2-chloromaleylacetate into the 3-oxoadipate pathway. In a data base search the NH2-terminal sequence of maleylacetate reductase was found to be most similar to that of TfdF, a pJP4-encoded protein of as-yet-unknown function in 2,4-D degradation.  相似文献   

20.
Oxidation of indole by cytochrome P450 enzymes   总被引:9,自引:0,他引:9  
Indole is a product of tryptophan catabolism by gut bacteria and is absorbed into the body in substantial amounts. The compound is known to be oxidized to indoxyl and excreted in urine as indoxyl (3-hydroxyindole) sulfate. Further oxidation and dimerization of indoxyl leads to the formation of indigoid pigments. We report the definitive identification of the pigments indigo and indirubin as products of human cytochrome P450 (P450)-catalyzed metabolism of indole by visible, (1)H NMR, and mass spectrometry. P450 2A6 was most active in the formation of these two pigments, followed by P450s 2C19 and 2E1. Additional products of indole metabolism were characterized by HPLC/UV and mass spectrometry. Indoxyl (3-hydroxyindole) was observed as a transient product of P450 2A6-mediated metabolism; isatin, 6-hydroxyindole, and dioxindole accumulated at low levels. Oxindole was the predominant product formed by P450s 2A6, 2E1, and 2C19 and was not transformed further. A stable end product was assigned the structure 6H-oxazolo[3,2-a:4, 5-b']diindole by UV, (1)H NMR, and mass spectrometry, and we conclude that P450s can catalyze the oxidative coupling of indoles to form this dimeric conjugate. On the basis of these results, we propose that the P450/NADPH-P450 reductase system can catalyze oxidation of indole to a variety of products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号