首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three basic types of cells are distinguished in the rat vomeronasal epithelium at birth: bipolar neurons, supporting cells, and basal cells. Neurons at this time include both immature and differentiated cells. By the end of the first postnatal week, all neurons show morphological signs of maturity in their cytoplasm, including abundant granular and smooth endoplasmic reticulum, neurotubules, dense lamellar bodies, apical centrioles, and tufts of microvilli. During the third week microvilli are more frequently encountered and appear to be longer and more branched. Supporting cells appear well-developed by the second day after birth. During the first ten days of life, supporting cells lose their centrioles and all of the complex associated with ciliary generation in the apical zone. Basal cells appear to be more numerous in newborns than in older animals. Protrusions projecting into the lumen are frequently observed in the epithelium of newborn animals, both on the dendrites of neurons and on supporting cells. After the third week, such protrusions are only observed in the transitional zone between the sensory and the non-sensory epithelia of the vomeronasal tubes. In this transitional zone, a fourth cell type showing apical protrusions with microvilli differentiates. Cytoplasm in this type resembles that of neighboring ciliated cells but has no cilia or centrioles. These transitional cells are considered to be cells in an intermediate state of differentiation, between that of the differentiated neurons and supporting cells of the sensory epithelium and that of the predominate ciliated cells of the non-sensory epithelium. The results suggest that by the end of the third week the vomeronasal epithelium is morphologically mature.  相似文献   

2.
Snake vomeronasal receptor neurons in slice preparations were studied using the patch-clamp technique in the conventional and nystatin-perforated whole-cell configurations. The mean resting potential was approximately -70 mV; the average input resistance was 3 GOmega. Neurons required current injection of only 1-10 pA to display a variety of spiking patterns. Intracellular dialysis of 100 microM inositol 1,4,5-trisphosphate (IP(3)) evoked an inward current in 38% of neurons, with an average peak amplitude of 16.4 +/- 2.8 pA at a holding potential of -70mV. Application of 100 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-trisphosphate (F-IP(3)), a derivative of IP(3), also evoked an inward current in 4/8 (50%) neurons (32.6 +/- 58 pA at -70 mV, n = 4). The reversal potentials of the induced components were estimated to be -14 +/- 5 mV for IP(3) and -17 +/- 3 mV for F-IP(3). Bathing the neurons in 10 microM ruthenium red solution greatly reduced the IP(3)-evoked inward current to 1.6 +/- 1.1 pA at -70 mV (n = 6). With Cs(+)-containing internal solution, neither the Ca(2+)-ATPase inhibitor thapsigargin (1-50 microM) nor the Ca(2+)-ionophore ionomycin (10 microM) evoked a significant current response, suggesting that IP(3) can elicit current response in the neurons without mediation by intracellular Ca(2+) stores. Intracellular application of 1 mM cAMP evoked no detectable current response. Extracellular application of chemoattractant for snakes evoked a very large inward current. The reversal potential of the chemoattractant-induced current was similar to that of the IP(3)-induced current. The present results suggest that IP(3) may act as a second messenger in the transduction of chemoattractants in the garter snake vomeronasal organ.  相似文献   

3.
Use of H3-thymidine autoradiography and unilateral vomeronasal (VN) axotomy has permitted us to demonstrate directly the existence of VN stem cells in the adult garter snake and to trace continuous bipolar neuron development and migration in the normal VN and deafferentated VN epithelium in the same animal. The vomeronasal epithelium and olfactory epithelium of adult garter snakes are both capable of incorporating H3-thymidine. In the sensory epithelium of the vomeronasal organ, H3-thymidine-labeled cells were initially restricted to the base of the undifferentiated cell layer in animals surviving 1 day following H3-thymidine injection. With increasing survival time, labeled cells progressively migrated vertically within the receptor cell column toward the apex of the bipolar neuron layer. In both the normal and denervated VN epithelium, labeled cells were observed through the 56 days of postoperative survival. In the normal epithelium, labeled cells were always located within the matrix of the intact receptor cell columns. However, labeled cells of the denervated epithelium were always located at the apical front of the newly formed cell mass following depletion of the original neuronal cell population. In addition, at postoperative days 28 and 56, labeled cells of the denervated VN epithelium achieved neuronal differentiation and maturation by migrating much farther away from the base of the receptor cell column than the labeled cells on the normal, unoperated contralateral side. This study directly demonstrates that basal cells initially incorporating H3-thymidine are indeed stem cells of the VN epithelium in adult garter snakes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Vomeronasal organs from female rats were dissociated and isolated microvillous receptor neurons were studied. The isolated receptor neurons kept the typical bipolar shape which they have in situ as observed by scanning electron microscopy. We applied the perforated patch-clamp technique using the cation-selective ionophore gramicidin on freshly isolated and well differentiated receptor neurons. The mean resting potential was -58+/-14 mV (n=39). The contribution of the sodium pump current to the resting potential was demonstrated by lowering the K+ concentration in the bath or by application of 100 microM dihydro-ouabain. The input resistance was in the range of 1-6 GOmega and depolarizing current pulses of a few pA were sufficient to trigger overshooting action potentials. In voltage clamp conditions a fast transient sodium inward current and a sustained outward potassium current were activated by membrane depolarization. These observations indicate that freshly isolated vomeronasal receptor neurons of rats can be recorded, using gramicidin, with little modification of the intracellular content. Their electrophysiological properties are very similar to those observed in situ. Four out of eight female vomeronasal receptor cells were depolarized by diluted rat male urine.   相似文献   

5.
The role of nerve growth factor (NGF) in neurotrophic support for the extrinsic innervation of the nasal and oral mucosae was investigated in keratin 14 (K14)-NGF transgenic mice in which NGF was over-expressed in K14-synthesizing cells. K14 immunoreactivity was localized in the epithelial basal cells of the whisker pad skin, the hard palate, the floor of the ventral meatus, and the anterior tongue that are stratified squamous epithelia, and also in basal cells of the vomeronasal, olfactory, and respiratory epithelia that are non-stratified epithelia. In transgenic mice, NGF expression was identified and confined primarily to the basal cells of stratified epithelia. The nasal mucosae including the vomeronasal, olfactory, and respiratory mucosae, and the glands associated with the vomeronasal organ received a greater innervation of protein gene product 9.5-immunoreactive extrinsic fibers in transgenic animals than nontransgenic controls. An increased density of calcitonin gene-related peptide-immunoreactive extrinsic fibers was observed in the nonsensory epithelia of the vomeronasal organ, the olfactory sensory and respiratory epithelia in transgenic animals. Our results indicated that the hyperinnervation of the nasal and oral mucosae by extrinsic neurons is due at least partially to target-derived NGF synthesis and release by K14-expressing basal cells.This work was supported by NIH grants NIDCD-00159 (T.V.G.), NIDCO-01715 (M.L.G.), and NINDS-31826 (K.M.A.).  相似文献   

6.
The vomeronasal organ (VNO) is important for activating accessory olfactory pathways that are involved in sexually dimorphic mating behavior. The VNO of male garter snakes is critically important for detection of, and response to, female sex pheromones. In the present study, under voltage-clamp conditions, male snake VNO neurons were stimulated with female sexual attractiveness pheromone. Thirty-nine of 139 neurons exhibited inward current responses (reversal potential: -10.6 +/- 2.8 mV). The amplitude of the inward current was dose dependent, and the relationship could be fitted by the Hill equation. Under current-clamp conditions, application of pheromone produced membrane depolarizing responses and increases in firing frequency. These results suggest that the female pheromone directly affects male snake VNO neurons and results in opening of ion channels, thereby converting the pheromone signal to an electrical signal. The response to female pheromone is sexually dimorphic, that is, the pheromone does not evoke responses in VNO neurons of female snakes. An associated finding of the present study is that the female sex pheromone, which is insoluble in aqueous solutions, became soluble in the presence of Harderian gland homogenate.  相似文献   

7.
8.
The experimental model for studying the convergence of the heterotype olfactory receptors on the single secondary neuron of the olfactory bulb is proposed. The secondary neuron with bilateral connections (with both olfactory epithelia) in the animals with fused olfactory bulb may serve such a model. The intracellular recording from these secondary neurons of the fused frog's bulb have revealed the secondary neurons which were activated by a certain odorant stimulation of only the one olfactory epithelium, the same odorant stimulation of the other epithelium did not activate (or inhibit) the neurons. The data obtained show that the inputs on the secondary neurons are heterotype, i. e. show the heterogeneous convergence of sensory information on the secondary neurons.  相似文献   

9.
Plethodontid salamanders have unique nasolabial grooves that may function as “capillary tubes” to convey chemicals to the vomeronasal organ when these animals nose-tap. 3H-proline was placed at the base of these grooves in Plethodon cinereus, and autoradiography revealed large concentrations of radioactive material in the vomeronasal organs. There was no significant accumulation of radioactive material in the main olfactory epithelium. Salamanders with blocked nasolabial grooves lacked significant accumulation of material in their nasolabial grooves or vomeronasal epithelia, although some salamanders had radioactive material in the posterior portion of their vomeronasal organ that had entered through the internal nares. Anteriorly placed vomeronasal organs situated adjacent to the posterior limits of the nasolabial grooves may insure that nose-tapping primarily stimulates the vomeronasal sensory epithelium.  相似文献   

10.
Following shocks with low voltage electric current, earthworms, Lumbricus terrestris, secrete a yellow mucus that has alarm properties for conspecifics and chemoattractive properties for garter snakes, Thamnophis sirtalis. A proteinaceous chemoattractant for garter snakes has been isolated and purified to homogeneity from such secretions by means of permeation chromatography and semipreparative nondenaturing polyacrylamide gel electrophoresis. The purified protein is highly attractive to garter snakes; it loses its activity after proteolytic digestion. It is a glycoprotein consisting of a single polypeptide chain with an NH2-terminal alanine. This chemoattractant has a minimum molecular mass of 15.4 kDa calculated from its amino acid and carbohydrate contents and an apparent molecular mass of about 20 kDa as estimated from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It has a pI of about 4.0, and it binds wheat germ agglutinin but not concanavalin A. This chemoattractant shows a protein to carbohydrate ratio of 2.0 +/- 0.08 (n = 5) and a ratio of total sugar to amino sugar of 1.9 +/- 0.08 (n = 3). The sequence of its NH2-terminal 15 amino acid residues has been determined. Studies were also conducted on the chemosignal transduction through the vomeronasal sensory system of the garter snake. Dot blot analysis showed that the purified chemoattractant bound to snake vomeronasal sensory epithelial membrane fractions. It did not bind to membrane extracts of the nonsensory epithelium of the vomeronasal mushroom body. The chemoattractant also bound specifically to vomeronasal sensory epithelial membrane in a reversible and saturable fashion with Kd and Bmax values of about 0.3 microM and 0.4 nmol/mg of protein, respectively. In electrophysiological studies, the chemoattractant applied to the vomeronasal epithelium caused an increase in firing rate of individual neurons in the accessory olfactory bulb of garter snakes, the projection site for vomeronasal neurons. The present results are the first clear biochemical and electrophysiological evidence for a vomeronasal epithelium response to a purified nonvolatile odorant, and this makes the garter snake vomeronasal system ideal for studying the mechanisms of chemosignal transduction.  相似文献   

11.
The vomeronasal epithelium of adult garter snakes (Thamnophis sirtalis and T. radix) was studied by light and electron microscopy. The sensory epithelium is extraordinarily thick, consisting of a supporting cell layer, a bipolar cell layer, and an undifferentiated cell layer. The supporting cell layer is situated along the luminal surface and includes supporting cells and the peripheral processes (dendrites) of bipolar neurons. The luminal surfaces of both supporting cells and bipolar neurons are covered with microvilli. Specializations of membrane junctions are always observed between adjacent cells in the subluminal region. Below the supporting cell layer, the epithelium is characterized by a columnar organization. Each column contains a population of bipolar neurons and undifferentiated cells. These cells are isolated from the underlying vascular and pigmented connective tissue by the presence of a thin sheath of satellite cells and a basal lamina. Heterogeneity of cell morphology occurs within each cell column. Generative and undifferentiated cells occupy the basal regions and mature neurons occupy the apical regions. Transitional changes in cell morphology occur within the depth of each cell column. These observations suggest that the vomeronasal cell column is the structural unit of the organ and may represent the dynamic unit for cell replacement as well. A sequential process of cell proliferation, neuronal differentiation, and maturation appears to occur in the epithelium despite the adult state of the animal.  相似文献   

12.
The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investigate the physiological role played by the increase in intracellular calcium concentration in the apical region of these neurons, we produced localized, rapid, and reproducible increases in calcium concentration with flash photolysis of caged calcium and measured calcium-activated currents with the whole cell voltage-clamp technique. On average, a large inward calcium-activated current of -261 pA was measured at -50 mV, rising with a time constant of 13 ms. Ion substitution experiments showed that this current is anion selective. Moreover, the chloride channel blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid partially inhibited the calcium-activated current. These results directly demonstrate that a large chloride current can be activated by calcium in the apical region of mouse vomeronasal sensory neurons. Furthermore, we showed by immunohistochemistry that the calcium-activated chloride channels TMEM16A/anoctamin1 and TMEM16B/anoctamin2 are present in the apical layer of the vomeronasal epithelium, where they largely colocalize with the TRPC2 transduction channel. Immunocytochemistry on isolated vomeronasal sensory neurons showed that TMEM16A and TMEM16B coexpress in the neuronal microvilli. Therefore, we conclude that microvilli of mouse vomeronasal sensory neurons have a high density of calcium-activated chloride channels that may play an important role in vomeronasal transduction.  相似文献   

13.
Chemosensory cues play an important role in the daily lives of salamanders, mediating foraging, conspecific recognition, and territorial advertising. We investigated the behavioral effects of conspecific whole-body odorants in axolotls, Ambystoma mexicanum, a salamander species that is fully aquatic. We found that males increased general activity when exposed to female odorants, but that activity levels in females were not affected by conspecific odorants. Although males showed no difference in courtship displays across testing conditions, females performed courtship displays only in response to male odorants. We also found that electro-olfactogram responses from the olfactory and vomeronasal epithelia were larger in response to whole-body odorants from the opposite sex than from the same sex. In males, odorants from gravid and recently spawned females evoked different electro-olfactogram responses at some locations in the olfactory and vomeronasal epithelia; in general, however, few consistent differences between the olfactory and vomeronasal epithelia were observed. Finally, post hoc analyses indicate that experience with opposite-sex conspecifics affects some behavioral and electrophysiological responses. Overall, our data indicate that chemical cues from conspecifics affect general activity and courtship behavior in axolotls, and that both the olfactory and vomeronasal systems may be involved in discriminating the sex and reproductive condition of conspecifics.Abbreviations EOG electro-olfactogram - VNO vomeronasal organ  相似文献   

14.
Excitatory and inhibitory responses of sympathetic discharge were recorded in single renal postganglionic neurons of rabbits anaesthetized with urethane and chloralose. The animals were vagotomized and had transected aortic nerves. Responses were elicited by single volleys in the aortic C-fibres. Excitatory responses consisted in short-lasting increase in the rate of ongoing sympathetic discharge and were followed by inhibitory responses. Excitatory effects together with inhibitory responses were seen in 68% of units (19/28). Only excitatory effects appeared in 2 neurons (7.1%) and only inhibitory effects in 7 neurons (25%). In renal neurons exhibiting both effects, the excitatory responses appeared after latency of 172 +/- 8 ms (x +/- S.D.) and had duration of 64 +/- 11 ms. Inhibitory effects had latency o f 257 +/- 10 ms and their duration amounted to 265 +/- 22 ms. In more than half of recordings the excitatory responses were separated from the inhibitory effects by discharge lasting 33 +/- 4 ms. Significant correlations between latencies of excitatory and inhibitory responses and between duration of excitatory and latency of inhibitory responses suggest interaction between both effects. Increase in the number of afferent volleys (1 through 5) evoked relatively small changes in duration of the excitatory effect indicating that temporal facilitation is of minor importance in generating this response. Temporal facilitation was found to play an important role in determining duration of the inhibitory response. Comparison of effects of unilateral and bilateral stimulation of the aortic C-fibres showed larger occlusion of durations of the excitatory than inhibitory responses.  相似文献   

15.
16.
Summary Sections from the nasal cavity of 12-day-old Swiss albino mice (NMRI strain) were subjected to lectin histochemistry. A panel of biotinylated lectins (Con A, WGA, s-WGA, PNA, SBA, DBA and UEA I) and a horseradish peroxidase-conjugated lectin (GSA II) showed marked differences in binding to the respiratory and the neuroepithelial cells. SBA (affinity for galactose andN-acetylgalactosamine), PNA (galactose) and WGA (sialic acids andN-acetylglucosamine) labelled the receptor neurons in the olfactory and vomeronasal epithelium. DBA (N-acetylgalactosamine) labelled a subgroup of about 5% of the olfactory receptor neurons, but most neurons in the vomeronasal organ. UEA I (fucose) and s-WGA (N-acetylglucosamine) intensely labelled the entire nerve cell population in the vomeronasal organ, but in the olfactory epithelium the labelling with these lectins was stratified. In the respiratory epithelium the ciliated cells were labelled with WGA and s-WGA, while the secretory cells bound most of the lectins. Thus different sugars are exposed on the surface of the different types of epithelia in the nasal cavity, providing a basis for selectivity in microbial attacks on these areas.  相似文献   

17.
Calcium-activated chloride channels are expressed in chemosensory neurons of the nose and contribute to secretory processes and sensory signal transduction. These channels are thought to be members of the family of anoctamins (alternative name: TMEM16 proteins), which are opened by micromolar concentrations of intracellular Ca2+. Two family members, ANO 1 (TMEM16A) and ANO 2 (TMEM16B), are expressed in the various sensory and respiratory tissues of the nose. We have examined the tissue specificity and sub-cellular localization of these channels in the nasal respiratory epithelium and in the five chemosensory organs of the nose: the main olfactory epithelium, the septal organ of Masera, the vomeronasal organ, the Grueneberg ganglion and the trigeminal system. We have found that the two channels show mutually exclusive expression patterns. ANO 1 is present in the apical membranes of various secretory epithelia in which it is co-localized with the water channel aquaporin 5. It has also been detected in acinar cells and duct cells of subepithelial glands and in the supporting cells of sensory epithelia. In contrast, ANO 2 expression is restricted to chemosensory neurons in which it has been detected in microvillar and ciliary surface structures. The different expression patterns of ANO 1 and ANO 2 have been observed in the olfactory, vomeronasal and respiratory epithelia. No expression has been detected in the Grueneberg ganglion or trigeminal sensory fibers. On the basis of this differential expression, we derive the main functional features of ANO 1 and ANO 2 chloride channels in the nose and suggest their significance for nasal physiology.  相似文献   

18.
A classification schema for the vomeronasal organ in humans   总被引:1,自引:0,他引:1  
The vomeronasal organ is a chemoreceptive structure located at the base of the nasal septum with direct axonal connections to the accessory olfactory bulb in many terrestrial vertebrates. Pheromones presumably bind to the vomeronasal organ and exert behavioral or physiologic responses, thereby allowing chemical communication between animals of the same species. The presence and function of the vomeronasal organ in humans is debated. A phenotypic classification schema for the human vomeronasal organ is described and applied to 253 human subjects who underwent nasal examination. Of these subjects, only 6 percent possessed a vomeronasal organ with 64 percent unilateral and 36 percent bilateral in appearance. No difference existed in gender, age, or race between those subjects with or without a vomeronasal organ. There is no evidence supporting involutional senescence of this structure. Future investigations should use this phenotypic schema for the vomeronasal organ to allow accurate comparisons of study populations.  相似文献   

19.
《Journal of morphology》2017,278(9):1208-1219
The anuran peripheral olfactory system is composed of a number of subsystems, represented by distinct neuroepithelia. These include the main olfactory epithelium and vomeronasal organ (found in most tetrapods) and three specialized epithelia of anurans: the buccal‐exposed olfactory epithelium of larvae, and the olfactory recess and middle chamber epithelium of postmetamorphic animals. To better characterize the developmental changes in these subsystems across the life cycle, morphometric changes of the nasal chemosensory organs during larval development and metamorphosis were analyzed in three different anuran species (Rhinella arenarum , Hypsiboas pulchellus , and Xenopus laevis ). We calculated the volume of the nasal chemosensory organs by measuring the neuroepithelial area from serial histological sections at four different stages. In larvae, the vomeronasal organ was relatively reduced in R. arenarum compared with the other two species; the buccal‐exposed olfactory epithelium was absent in X. laevis , and best developed in H. pulchellus . In postmetamorphic animals, the olfactory epithelium (air‐sensitive organ) was relatively bigger in terrestrial species (R. arenarum and H. pulchellus ), whereas the vomeronasal and the middle chamber epithelia (water‐sensitive organs) was best developed in X. laevis . A small olfactory recess (likely homologous with the middle chamber epithelium) was found in R. arenarum juveniles, but not in H. pulchellus . These results support the association of the vomeronasal and middle chamber epithelia with aquatic olfaction, as seen by their enhanced development in the secondarily aquatic juveniles of X. laevis . They also support a role for the larval buccal‐exposed olfactory epithelium in assessment of oral contents: it was absent in X. laevis , an obligate suspension feeder, while present in the two grazing species. These initial quantitative results give, for the first time, insight into the functional importance of the peripheral olfactory subsystems across the anuran life cycle.  相似文献   

20.
This study investigated whether contact with the olfactory bulb was necessary for developing and renewing olfactory receptor neurons (ORNs) to attain normal odorant responsiveness, and whether the anatomical and functional recoveries of the olfactory epithelium were similar in both bulbectomized (BE) and bilaterally axotomized (AX) preparations. In vivo electrophysiological recordings were obtained in response to amino acids, a bile acid [taurolithocholic acid sulfate(TLCS)] and a pheromonal odorant [17α, 20β,-dihydroxy-4-pregnen-3-one (17,20P)] from sexually immature goldfish. Both transmission and scanning electron microscopy indicated that the olfactory epithelium degenerated in BE and AX goldfish. Within 1–2 weeks subsequent to the respective surgeries, responses to high concentrations (>0.1 mmol · l−1) of the more stimulatory amino acids remained, whereas responses were no longer obtainable to TLCS and 17,20P. At 4 weeks, responses to amino acid stimuli recovered to control levels, while responses to TLCS and 17,20P were minimal. By 7 weeks post bilateral axotomy, the olfactory epithelium recovered to a condition similar to control sensory epithelium; however, the rate of degeneration and proliferation of receptor neurons in BE preparations appeared to remain in balance, thus blocking further recovery of the olfactory epithelium. At 7 weeks post surgery, odorant responses of AX and BE goldfish to TLCS and 17,20P were still recovering. Accepted: 14 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号