首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Outer membrane vesicles (OMVs) that are released from Gram-negative pathogenic bacteria can serve as vehicles for the translocation of effectors involved in infectious processes. In this study we have investigated the role of OMVs of the Vibrio cholerae O1 El Tor A1552 strain in resistance to antimicrobial peptides (AMPs). To assess this potential role, we grew V. cholerae with sub-lethal concentrations of Polymyxin B (PmB) or the AMP LL-37 and analyzed the OMVs produced and their effects on AMP resistance. Our results show that growing V. cholerae in the presence of AMPs modifies the protein content of the OMVs. In the presence of PmB, bacteria release OMVs that are larger in size and contain a biofilm-associated extracellular matrix protein (Bap1). We demonstrated that Bap1 binds to the OmpT porin on the OMVs through the LDV domain of OmpT. In addition, OMVs from cultures incubated in presence of PmB also provide better protection for V. cholerae against LL-37 compared to OMVs from V. cholerae cultures grown without AMPs or in presence of LL-37. Using a bap1 mutant we showed that cross-resistance between PmB and LL-37 involved the Bap1 protein, whereby Bap1 on OMVs traps LL-37 with no subsequent degradation of the AMP.  相似文献   

2.
Escherichia coli OmpT, located in the outer membrane, has been characterized as a plasminogen activator, with the ability to hydrolyze protamine and block its entry. In this investigation, a complex of low molecular weight cationic peptides purified from human urine by a combination of membrane ultrafiltration and weak cation exchange chromatography was characterized. The impact of OmpT on E. coli resistance to urinary cationic peptides was investigated by testing ompT knockout strains. The ompT mutants were more susceptible to urinary cationic peptides than ompT+ strains, and this difference was abolished by complementation of the mutants with pUC19 carrying the ompT gene. The urinary protease inhibitor ulinastatin greatly decreased the resistance of the ompT+ strains. Overall, the data indicate that OmpT may help E. coli persist longer in the urinary tract by enabling it to resist the antimicrobial activity of urinary cationic peptides.  相似文献   

3.
A large plasmid-encoded protein, VirG, on the bacterial surface is essential for the spreading of Shigella by eliciting polar deposition of filamentous actin In the cytoplasm of epithelial cells. VirG expression from the large plasmid is diminished greatly when it is introduced into Escherichia coli K-12 from Shigella. In an attempt to identify factors affecting VirG expression, we found that the absence of the ompT gene, encoding outer membrane protease OmpT, restored full production of VirG protein to E. coli K-12. Conversely, upon introduction of the ompT gene of E. coii K-12 into Shigella, spreading ability was completely abolished, probably because of the proteolytic degradation of VirG protein by OmpT. Analysis of the DNA sequence of the ompT region indicated that the absence of the ompT gene occurred in Shigella and enteroinvasive E. coli strains, and that the absent DNA segment corresponded to a remnant lambdoid phage structure found in E. coli K-12, which encompasses a 21 kb DNA segment spanning from argU through to the ompT genes. Since ompT is located near purE in E. coli K-12 and a virulence locus for provoking keratocon-junctivitis in the eyes of guinea-pigs, named kcpA is located near purE in S. fiexnerl, and the two loci are involved in VirG expression, the KcpA~ mutants of S. flexneri 2a constructed were examined for correlation between acquisition of ompT and VirG degradation. Our data suggest that the previous recognition of a kcpA locus in S. flexneri is the result of transfer of the ompr gene from E. coli K-12, giving rise to a KcpA phenotype. These results indicate that the lack of OmpT protease confers upon Shigella the ability to spread into adjacent epithelial cells.  相似文献   

4.
Recently we found that the cells of Escherichia coli strain BL21 producing a fusion protein, GST-Sup35NM, show a much more rapid decrease in colony-forming ability in the stationary phase than control cells. In this study, it was found that an extract of the cells producing GST-Sup35NM forms fibrous protein polymers containing GST-Sup35NM. In the course of the study, we realized that strain BL21 carried the ompT mutation. We suspected that the deficiency in OmpT protease was responsible for the observed phenotype. To test this, we introduced the wild-type ompT gene into strain BL21, and found that the transformed cells recovered the wild-type phenotype. We concluded that OmpT protease, though known to localize on the cell surface, is involved in protein quality control within the cell.  相似文献   

5.
The influence of extracytoplasmic proteases on the resistance of Escherichia coli to the antimicrobial peptide protamine was investigated by testing strains with deletions in the protease genes degP, ptr, and ompT. Only ΔompT strains were hypersusceptible to protamine. This effect was abolished by plasmids carrying ompT. Both at low and at high Mg2+ concentrations, ompT+ strains cleared protamine from the medium within a few minutes. By contrast, at high Mg2+ concentrations, protamine remained present for at least 1 h in the medium of an ompT strain. These data indicate that OmpT is the protease that degrades protamine and that it exerts this function at the external face of the outer membrane.  相似文献   

6.
7.
Antimicrobial peptides (AMPs) constitute an essential part of the innate immune defence. Pathogenic bacteria have evolved numerous strategies to withstand AMP‐mediated killing. The influence of host epithelia on bacterial AMP resistance is, however, still largely unknown. We found that adhesion to pharyngeal epithelial cells protected Neisseria meningitidis, a leading cause of meningitis and sepsis, from the human cathelicidin LL‐37, the cationic model amphipathic peptide (MAP) and the peptaibol alamethicin, but not from polymyxin B. Adhesion to primary airway epithelia resulted in a similar increase in LL‐37 resistance. The inhibition of selective host cell signalling mediated by RhoA and Cdc42 was found to abolish the adhesion‐induced LL‐37 resistance by a mechanism unrelated to the actin cytoskeleton. Moreover, N. meningitidis triggered the formation of cholesterol‐rich membrane microdomains in pharyngeal epithelial cells, and host cell cholesterol proved to be essential for adhesion‐induced resistance. Our data highlight the importance of Rho GTPase‐dependent host cell signalling for meningococcal AMP resistance. These results indicate that N. meningitidis selectively exploits the epithelial microenvironment in order to protect itself from LL‐37.  相似文献   

8.
9.
10.
Summary A fusion gene (ces-hlyA s) was constructed by ligating the genetic information for the C-terminal 60 amino acids (hlyA s) ofEscherichia coli hemolysin (H1yA) to the ces gene for a cholesterol esterase/lipase (CE) from aPseudomonas species. Part (about 30 %) of the expressed fusion protein CE-H1yAs was secreted inE. coli carryinghlyB andhlyD genes. Following the insertion between the reporter gene andhlyA s of a linker sequence that contains the information for potential cleavage sites for the outer membrane protease OmpT, two different fusion proteins (PhoA-H1yAs and CE-HlyAs) were shown to be cleaved by OmpT between the two parts during H1yB/H1yD-mediated secretion. Processed PhoA and CE accumulated in the supernatant. The efficiency of cleavage by OmpT was considerably improved by increasedompT gene dose. It was further shown that OmpT preferentially recognizes potential cleavage sites within the linker sequence.  相似文献   

11.
Results concerning the precise location of the ompT gene (encoding the outer membrane protease OmpT) on the Escherichia coli chromosome were obtained which disagree with published restriction sites in the gene. It is shown that the gene, together with appY, is present on a 3.075 PstI fragment, encompassing positions 596–598 of the E. coli physical map.  相似文献   

12.
13.
The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane‐bound compartment termed Legionella‐containing vacuole. In the current study, we analysed the membrane architecture of L. pneumophila OMVs by small‐angle X‐ray scattering and biophysically characterized OMV membranes. We investigated the interaction of L. pneumophila OMVs with model membranes by Förster resonance energy transfer and Fourier transform infrared spectroscopy. These experiments demonstrated the incorporation of OMV membrane material into liposomes composed of different eukaryotic phospholipids, revealing an endogenous property of OMVs to fuse with eukaryotic membranes. Cellular co‐incubation experiments showed a dose‐ and time‐dependent binding of fluorophore‐labelled OMVs to macrophages. Trypan blue quenching experiments disclosed a rapid internalization of OMVs into macrophages at 37 and 4°C. Purified OMVs induced tumour necrosis factor‐α production in human macrophages at concentrations starting at 300 ng ml?1. Experiments on HEK293‐TLR2 and TLR4/MD‐2 cell lines demonstrated a dominance of TLR2‐dependent signalling pathways. In summary, we demonstrate binding, internalization and biological activity of L. pneumophila OMVs on human macrophages. Our data support OMV membrane fusion as a mechanism for the remote delivery of virulence factors to host cells.  相似文献   

14.
Aims: To investigate the prevalence of traditional and emerging types of enteropathogenic (EPEC) and enterohaemorrhagic Escherichia coli (EHEC) strains in stool samples from children with diarrhoea and to characterize their virulence genes involved in the attaching and effacing (A/E) phenotype. Methods and Results: Serological and PCR‐based methods were used for detection and isolation of EPEC and EHEC strains from 861 stool samples from diarrhoeic children. Agglutination with traditional EPEC and EHEC O‐group‐specific antisera resulted in detection of 38 strains; 26 of these carried virulence factors of EPEC or EHEC. PCR screening for the eae gene resulted in isolation of 97 strains, five carried genes encoding Shiga toxins (stx), one carried the bfpA gene and 91 were atypical EPEC. The 97 EPEC and EHEC strains were divided into 36 O‐serogroups and 21 H‐types, only nine strains belonged to the traditional EPEC O‐groups O26, O55, O86 and O128. In contrast, EPEC serotypes O28:H28, O51:H49, O115:H38 and O127:H40 were found in multiple cases. Subtyping the virulence factors intimin, Tir and Tir‐cytoskeleton coupling effector protein (TccP)/TccP2 resulted in further classification of 93·8% of the 97 strains. Conclusions: Our findings show a clear advantage of the eae‐PCR over the serological detection method for identification of EPEC and EHEC strains from human patients. Significance and Impact of the Study: Molecular detection by the eae‐PCR followed by serotyping and virutyping is useful for monitoring trends in EPEC and EHEC infections and to discover their possible reservoirs.  相似文献   

15.
Outer membrane vesicles (OMVs) play an important role in the pathogenicity of Gram‐negative bacteria. Campylobacter jejuni produces OMVs that trigger IL‐8, IL‐6, hBD‐3 and TNF‐α responses from T84 intestinal epithelial cells and are cytotoxic to Caco‐2 IECs and Galleria mellonella larvae. Proteomic analysis of 11168H OMVs identified the presence of three proteases, HtrA, Cj0511 and Cj1365c. In this study, 11168H OMVs were shown to possess proteolytic activity that was reduced by pretreatment with specific serine protease inhibitors. OMVs isolated from 11168H htrA, Cj0511 or Cj1365c mutants possess significantly reduced proteolytic activity. 11168H OMVs are able to cleave both E‐cadherin and occludin, but this cleavage is reduced with OMVs pretreated with serine protease inhibitors and also with OMVs isolated from htrA or Cj1365c mutants. Co‐incubation of T84 monolayers with 11168H OMVs results in a visible reduction in both E‐cadherin and occludin. The addition of 11168H OMVs to the co‐culture of live 11168H bacteria with T84 cells results in enhanced levels of bacterial adhesion and invasion in a time‐dependent and dose‐dependent manner. Further investigation of the cleavage of host cell structural proteins by C. jejuni OMVs should enhance our understanding of the interactions of this important pathogen with intestinal epithelial cells.  相似文献   

16.
Results concerning the precise location of the ompT gene (encoding the outer membrane protease OmpT) on the Escherichia coli chromosome were obtained which disagree with published restriction sites in the gene. It is shown that the gene, together with appY, is present on a 3.075 PstI fragment, encompassing positions 596–598 of the E. coli physical map.  相似文献   

17.
Enterohemorrhagic Escherichia coli (EHEC) strains cause diarrhea and hemolytic uremic syndrome resulting from toxin-mediated microvascular endothelial injury. EHEC hemolysin (EHEC-Hly), a member of the RTX (repeats-in-toxin) family, is an EHEC virulence factor of increasingly recognized importance. The toxin exists as free EHEC-Hly and as EHEC-Hly associated with outer membrane vesicles (OMVs) released by EHEC during growth. Whereas the free toxin is lytic towards human endothelium, the biological effects of the OMV-associated EHEC-Hly on microvascular endothelial and intestinal epithelial cells, which are the major targets during EHEC infection, are unknown. Using microscopic, biochemical, flow cytometry and functional analyses of human brain microvascular endothelial cells (HBMEC) and Caco-2 cells we demonstrate that OMV-associated EHEC-Hly does not lyse the target cells but triggers their apoptosis. The OMV-associated toxin is internalized by HBMEC and Caco-2 cells via dynamin-dependent endocytosis of OMVs and trafficked with OMVs into endo-lysosomal compartments. Upon endosome acidification and subsequent pH drop, EHEC-Hly is separated from OMVs, escapes from the lysosomes, most probably via its pore-forming activity, and targets mitochondria. This results in decrease of the mitochondrial transmembrane potential and translocation of cytochrome c to the cytosol, indicating EHEC-Hly-mediated permeabilization of the mitochondrial membranes. Subsequent activation of caspase-9 and caspase-3 leads to apoptotic cell death as evidenced by DNA fragmentation and chromatin condensation in the intoxicated cells. The ability of OMV-associated EHEC-Hly to trigger the mitochondrial apoptotic pathway in human microvascular endothelial and intestinal epithelial cells indicates a novel mechanism of EHEC-Hly involvement in the pathogenesis of EHEC diseases. The OMV-mediated intracellular delivery represents a newly recognized mechanism for a bacterial toxin to enter host cells in order to target mitochondria.  相似文献   

18.
19.
The human cathelicidin LL‐37, a pleiotropic host defense peptide, is down‐regulated in gastric adenocarcinomas. We therefore investigated whether this peptide suppresses gastric cancer growth. LL‐37 lowered gastric cancer cell proliferation and delayed G1‐S transition in vitro and inhibits the growth of gastric cancer xenograft in vivo. In this connection, LL‐37 increased the tumor‐suppressing bone morphogenetic protein (BMP) signaling, manifested as an increase in BMP4 expression and the subsequent Smad1/5 phosphorylation and the induction of p21Waf1/Cip1. The anti‐mitogenic effect, Smad1/5 phosphorylation, and p21Waf1/Cip1 up‐regulation induced by LL‐37 were reversed by the knockdown of BMP receptor II. The activation of BMP signaling was paralleled by the inhibition of chymotrypsin‐like and caspase‐like activity of proteasome. In this regard, proteasome inhibitor MG‐132 mimicked the effect of LL‐37 by up‐regulating BMP4 expression and Smad1/5 phosphorylation. Further analysis of clinical samples revealed that LL‐37 and p21Waf1/Cip1 mRNA expressions were both down‐regulated in gastric cancer tissues and their expressions were positively correlated. Collectively, we describe for the first time that LL‐37 inhibits gastric cancer cell proliferation through activation of BMP signaling via a proteasome‐dependent mechanism. This unique biological activity may open up novel therapeutic avenue for the treatment of gastric cancer. J. Cell. Physiol. 223: 178–186, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Clusters of Neisseria meningitidis (Nm) urethritis among primarily heterosexual males in multiple US cities have been attributed to a unique non‐encapsulated meningococcal clade (the US Nm urethritis clade, US_NmUC) within the hypervirulent clonal complex 11. Resistance to antimicrobial peptides (AMPs) is a key feature of urogenital pathogenesis of the closely related species, Neisseria gonorrhoeae. The US_NmUC isolates were found to be highly resistant to the model AMP, polymyxin B (PmB, MICs 64–256 µg ml–1). The isolates also demonstrated stable subpopulations of heteroresistant colonies that showed near total resistant to PmB (MICs 384–1024 µg ml–1) and colistin (MIC 256 µg ml–1) as well as enhanced LL‐37 resistance. This is the first observation of heteroresistance in N. meningitidis. Consistent with previous findings, overall PmB resistance in US_NmUC isolates was due to active Mtr efflux and LptA‐mediated lipid A modification. However, whole genome sequencing, variant analyses and directed mutagenesis revealed that the heteroresistance phenotypes and very high‐level AMP resistance were the result of point mutations and IS1655 element movement in the pilMNOPQ operon, encoding the type IV pilin biogenesis apparatus. Cross‐resistance to other classes of antibiotics was also observed in the heteroresistant colonies. High‐level resistance to AMPs may contribute to the pathogenesis of US_NmUC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号