首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 933 毫秒
1.
The end tidal partial pressure of carbon dioxide (Pco2) was measured during treadmill exercise in 30 normal controls and 113 patients referred for assessment of chest pain. Among the 92 patients without significant ST depression hypocapnia occurred more often in those reporting “typical” than “atypical” chest pain (17 of 22 patients compared with 29 of 70; p<0·01). Hypocapnia was uncommon in patients with significant ST depression whether reporting typical or atypical chest pain (one of 10 patients and two of 11, respectively).Hypocapnia at rest (Pco2 <4 kPa) occurred in 16 (14%) patients but in only one control. Hypocapnia occurred during or after exercise in only one control and three of the 21 patients with significant ST depression on exercise (group 1). The remaining 92 patients were divided into those with a history suggestive of hyperventilation (group 2; n=30) and those without (group 3; n=62). Hypocapnia developed significantly more often in both these groups (21 and 25 patients respectively) than in controls or patients with significant ST depression.An abnormal response of the Pco2 to exercise provided objective data to support a clinical suspicion of chest pain induced by hyperventilation in 24 cases, suggested a cause for equivocal ST depression other than coronary stenosis in five patients, and led to the diagnosis of previously unsuspected respiratory disease in 14 patients.Measurement of end tidal Pco2 gives additional valuable diagnostic information during the conventional treadmill exercise test in patients with both typical and atypical chest pain.  相似文献   

2.
The effect of oral prethcamide (Micoren) (a mixture of two related amides of crotonyl N′ butyric acid) was compared with a placebo preparation in 13 patients with established chronic ventilatory failure. Part I of the study comprised a double-blind single cross-over trial with an initial assessment and two further assessments at the end of each period of one month. Prethcamide was taken in 200-mg. doses four times daily. No subjective or objective changes were noted, and in particular the resting Pco2 showed no change.Part II of the study comprised a double-blind single cross-over trial of the short-term effect of prethcamide compared with placebo in 12 patients in chronic ventilatory failure. Frequent estimations of mixed venous Pco2 were made with a rebreathing technique for four and a half hours after ingestion of prethcamide or placebo preparation.Following prethcamide a fall in Pco2 level to a minimum value at 30 minutes of 93% of control values and persisting for about three hours was noted for the group as a whole. The fall represents a lowering by about 4 mm. Hg of the mixed venous Pco2.It is concluded that, though in patients with chronic ventilatory failure prethcamide may reduce the Pco2 in the short term, there is no subjective benefit or observable objective change following repeated administrations over a period of one month.  相似文献   

3.
Respiratory pattern and arterial blood gas tensions were assessed in patients with acute cerebrovascular accidents. Hyperventilation, low Pco2, and high arterial pH were associated with a poor prognosis, whereas patients with normal respiratory pattern and blood gas tensions survived. Periodic and Cheyne-Stokes breathing carried an intermediate prognosis.  相似文献   

4.
The endosperm of castor bean seeds (Ricinus communis L.) contains two —SH-dependent aminopeptidases, one hydrolyzing l-leucine-β-naphthylamide optimally at pH 7.0, and the other hydrolyzing l-proline-β-naphthylamide optimally at pH 7.5. After germination the endosperm contains in addition an —SH-dependent hemoglobin protease, a serine-dependent carboxypeptidase, and at least two —SH-dependent enzymes hydrolyzing the model substrate α-N-benzoyl-dl-arginine-β-naphthylamide (BANA). The carboxypeptidase is active on a variety of N-carbobenzoxy dipeptides, especially N-carbobenzoxy-L-phenylalanine-l-alanine and N-carbobenzoxy-l-tyrosine-l-leucine. The pH optima for the protease, carboxypeptidase, and BANAase acivities are 3.5 to 4.0, 5.0 to 5.5, and 6 to 8, respectively.  相似文献   

5.
Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10−5 and ∼7.9·10−5 m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10−5 m at pH 6.0 and increased to ∼8.3·10−5 m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10−5 m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0–6.1·10−4 m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3–2.0·10−5 m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation.  相似文献   

6.
Mutations in otoferlin, a C2 domain-containing ferlin family protein, cause non-syndromic hearing loss in humans (DFNB9 deafness). Furthermore, transmitter secretion of cochlear inner hair cells is compromised in mice lacking otoferlin. In the present study, we show that the C2F domain of otoferlin directly binds calcium (KD = 267 μm) with diminished binding in a pachanga (D1767G) C2F mouse mutation. Calcium was found to differentially regulate binding of otoferlin C2 domains to target SNARE (t-SNARE) proteins and phospholipids. C2D–F domains interact with the syntaxin-1 t-SNARE motif with maximum binding within the range of 20–50 μm Ca2+. At 20 μm Ca2+, the dissociation rate was substantially lower, indicating increased binding (KD = ∼10−9) compared with 0 μm Ca2+ (KD = ∼10−8), suggesting a calcium-mediated stabilization of the C2 domain·t-SNARE complex. C2A and C2B interactions with t-SNAREs were insensitive to calcium. The C2F domain directly binds the t-SNARE SNAP-25 maximally at 100 μm and with reduction at 0 μm Ca2+, a pattern repeated for C2F domain interactions with phosphatidylinositol 4,5-bisphosphate. In contrast, C2F did not bind the vesicle SNARE protein synaptobrevin-1 (VAMP-1). Moreover, an antibody targeting otoferlin immunoprecipitated syntaxin-1 and SNAP-25 but not synaptobrevin-1. As opposed to an increase in binding with increased calcium, interactions between otoferlin C2F domain and intramolecular C2 domains occurred in the absence of calcium, consistent with intra-C2 domain interactions forming a “closed” tertiary structure at low calcium that “opens” as calcium increases. These results suggest a direct role for otoferlin in exocytosis and modulation of calcium-dependent membrane fusion.  相似文献   

7.
1. Phosphomevalonate kinase and 5-pyrophosphomevalonate decarboxylase have been purified from the freeze-dried latex serum of the commercial rubber tree Hevea brasiliensis. 2. The phosphomevalonate kinase was acid- and heat-labile and required the presence of a thiol to maintain activity. 3. The 5-pyrophosphomevalonate decarboxylase was relatively acid-stable and more heat-stable than the phosphokinase. 4. Maximum activity of the phosphokinase was achieved at pH 7.2 with 0.2mm-5-phosphomevalonate (Km 0.042mm), 2.0mm-ATP (Km 0.19mm) and 8mm-Mg2+ at 40°C. The apparent activation energy was 14.8kcal/mol. 5. Maximum activity of 5-pyrophosphomevalonate decarboxylase was achieved at pH5.5–6.5 with 0.1mm-5-pyrophosphomevalonate (Km 0.004mm), 1.5mm-ATP (Km 0.12mm) and 2mm-Mg2+. The apparent activation energy was 13.7kcal/mol. The enzyme was somewhat sensitive to inhibition by its products, isopentenyl pyrophosphate and ADP.  相似文献   

8.
Streptococcus intermedius is a known human pathogen and belongs to the anginosus group (S. anginosus, S. intermedius, and S. constellatus) of streptococci (AGS). We found a large open reading frame (6,708 bp) in the lac operon, and bioinformatic analysis suggested that this gene encodes a novel glycosidase that can exhibit β-d-galactosidase and N-acetyl-β-d-hexosaminidase activities. We, therefore, named this protein “multisubstrate glycosidase A” (MsgA). To test whether MsgA has these glycosidase activities, the msgA gene was disrupted in S. intermedius. The msgA-deficient mutant no longer showed cell- and supernatant-associated β-d-galactosidase, β-d-fucosidase, N-acetyl-β-d-glucosaminidase, and N-acetyl-β-d-galactosaminidase activities, and all phenotypes were complemented in trans with a recombinant plasmid carrying msgA. Purified MsgA had all four of these glycosidase activities and exhibited the lowest Km with 4-methylumbelliferyl-linked N-acetyl-β-d-glucosaminide and the highest kcat with 4-methylumbelliferyl-linked β-d-galactopyranoside. In addition, the purified LacZ domain of MsgA had β-d-galactosidase and β-d-fucosidase activities, and the GH20 domain exhibited both N-acetyl-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activities. The β-d-galactosidase and β-d-fucosidase activities of MsgA are thermolabile, and the optimal temperature of the reaction was 40°C, whereas almost all enzymatic activities disappeared at 49°C. The optimal temperatures for the N-acetyl-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activities were 58 and 55°C, respectively. The requirement of sialidase treatment to remove sialic acid residues of the glycan branch end for glycan degradation by MsgA on human α1-antitrypsin indicates that MsgA has exoglycosidase activities. MsgA and sialidase might have an important function in the production and utilization of monosaccharides from oligosaccharides, such as glycans for survival in a normal habitat and for pathogenicity of S. intermedius.  相似文献   

9.
The uptake of phenylalanine was studied with vacuole isolated from barley mesophyll protoplasts. The phenylalanine transport exhibited saturation kinetics with apparent Km-values of 1.2 to 1.4 millimolar for ATP- or PPi-driven uptake; Vmax app was 120 to 140 nanomoles Phe per milligram of chlorophyll per hour (1 milligram of chlorophyll corresponds to 5 × 106 vacuoles). Half-maximal transport rates driven with ATP or PPi were reached at 0.5 millimolar ATP or 0.25 millimolar PPi. ATP-driven transport showed a distinct pH optimum at 7.3 while PPi-driven transport reached maximum rates at pH 7.8. Direct measurement of the H+-translocating enzyme activities revealed Km app values of 0.45 millimolar for ATPase (EC 3.6.1.3) and 23 micromolar for pyrophosphatase (PPase) (EC 3.6.1.1). In contrast to the coupled amino acid transport, ATPase and PPase activities had relative broad pH optima between 7 to 8 for ATPase and 8 to 9 for PPase. ATPase as well as ATP-driven transport was markedly inhibited by nitrate while PPase and PPi-coupled transport was not affected. The addition of ionophores inhibited phenylalanine transport suggesting the destruction of the electrochemical proton potential difference Δ μH+ while the rate of ATP and PPi hydrolysis was stimulated. The uptake of other lipophilic amino acids like l-Trp, l-Leu, and l-Tyr was also stimulated by ATP. They seem to compete for the same carrier system. l-Ala, l-Val, d-Phe, and d-Leu did not influence phenylalanine transport suggesting a stereospecificity of the carrier system for l-amino acids having a relatively high hydrophobicity.  相似文献   

10.
Obstructing lesions of the trachea and larynx which cause a predominantly inspiratory obstruction can be satisfactorily diagnosed by measuring both F.I.V.1 and F.E.V.1. Chronic airways obstruction involving intrathoracic airways produces a much lower F.E.V.1/F.I.V.1 percentage than normal, whereas obstruction to larynx and trachea causes a raised F.E.V.1/F.I.V.1 percentage. If flow-volume measurements are not available the F.E.V.1/F.I.V.1 percentage should provide a simple and useful method for diagnosis of upper airways obstruction.In one of the patients reported a predominantly inspiratory obstruction caused CO2 retention. In patients with airways obstruction the correlation between Pco2 and F.I.V.1 was found to be the same as between Pco2 and F.E.V.1. This suggests that respiratory failure can be caused by either inspiratory or expiratory airways obstruction and that neither is of greater importance in producing CO2 retention.  相似文献   

11.
The uptake of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the conjugated form of the ethylene precursor, into vacuoles isolated from Catharanthus roseus cells has been studied by silicone layer floatation filtering. The transport across the tonoplast of MACC is stimulated fourfold by 5 millimolar MgATP, has a Km of about 2 millimolar, an optimum pH around 7, and an optimum temperature at 30°C. Several effectors known to inhibit ATPase (N,N′-dicyclohexylcarbodiimide) and to collapse the transtonoplastic H+ electrochemical gradient (carbonylcyanide m-chlorophenylhydrazone, gramicidin, and benzylamine) all reduced MACC uptake. Abolishing the membrane potential with SCN and valinomycin also greatly inhibited MACC transport. Our data demonstrate that MACC accumulates in the vacuole against a concentration gradient by means of a proton motive force generated by a tonoplastic ATPase. The involvement of a protein carrier is suggested by the strong inhibition of uptake by compounds known to block SH—, OH—, and NH2— groups. MACC uptake is antagonized competitively by malonyl-d-tryptophan, indicating that the carrier also accepts malonyl-d-amino acids. Neither the moities of these compounds taken separately [1-aminocyclopropane-1-carboxylic acid, malonate, d-tryptophan or d-phenylalanine] nor malate act as inhibitors of MACC transport. The absence of inhibition of malate uptake by MACC suggests that MACC and malate are taken up by two different carriers. We propose that the carrier identified here plays an important physiological role in withdrawing from the cytosol MACC and malonyl-d-amino acids generated under stress conditions.  相似文献   

12.
Vancomycin-resistant enterococci acquire high-level resistance to glycopeptide antibiotics through the synthesis of peptidoglycan terminating in d-alanyl-d-lactate. A key enzyme in this process is a d-alanyl-d-alanine ligase homologue, VanA or VanB, which preferentially catalyzes the synthesis of the depsipeptide d-alanyl-d-lactate. We report the overexpression, purification, and enzymatic characterization of DdlN, a VanA and VanB homologue encoded by a gene of the vancomycin-producing organism Amycolatopsis orientalis C329.2. Evaluation of kinetic parameters for the synthesis of peptides and depsipeptides revealed a close relationship between VanA and DdlN in that depsipeptide formation was kinetically preferred at physiologic pH; however, the DdlN enzyme demonstrated a narrower substrate specificity and commensurately increased affinity for d-lactate in the C-terminal position over VanA. The results of these functional experiments also reinforce the results of previous studies that demonstrated that glycopeptide resistance enzymes from glycopeptide-producing bacteria are potential sources of resistance enzymes in clinically relevant bacteria.The origin of antibiotic resistance determinants is of significant interest for several reasons, including the prediction of the emergence and spread of resistance patterns, the design of new antimicrobial agents, and the identification of potential reservoirs for resistance elements. Antibiotic resistance can occur either through spontaneous mutation in the target or by the acquisition of external genetic elements such as plasmids or transposons which carry resistance genes (7). The origins of these acquired genes are varied, but it has long been recognized that potential reservoirs are antibiotic-producing organisms which naturally harbor antibiotic resistance genes to protect themselves from the actions of toxic compounds (6).High-level resistance to glycopeptide antibiotics such as vancomycin and teicoplanin in vancomycin-resistant enterococci (VRE) is conferred by the presence of three genes, vanH, vanA (or vanB), and vanX, which, along with auxiliary genes necessary for inducible gene expression, are found on transposons integrated into plasmids or the bacterial genome (1, 20). These three genes are essential to resistance and serve to change the C-terminal peptide portion of the peptidoglycan layer from d-alanyl-d-alanine (d-Ala-d-Ala) to d-alanyl-d-lactate (d-Ala-d-Lac). This change results in the loss of a critical hydrogen bond between vancomycin and the d-Ala-d-Ala terminus and in a 1,000-fold decrease in binding affinity between the antibiotic and the peptidoglycan layer, which is the basis for the bactericidal action of this class of compounds (5). The vanH gene encodes a d-lactate dehydrogenase which provides the requisite d-Lac (3, 5), while the vanX gene encodes a highly specific dd-peptidase which cleaves only d-Ala-d-Ala produced endogenously while leaving d-Ala-d-Lac intact (19, 21). The final gene, vanA or vanB, encodes an ATP-dependent d-Ala-d-Lac ligase (4, 8, 10). This enzyme has sequence homology with the chromosomal d-Ala-d-Ala ligases, which are essential for peptidoglycan synthesis but which generally lack the ability to synthesize d-Ala-d-Lac (9).We have recently cloned vanH, vanA, and vanX homologues from two glycopeptide antibiotic-synthesizing organisms: Amycolatopsis orientalis C329.2, which produces vancomycin, and Streptomyces toyocaensis NRRL 15009, which produces A47934 (14). In addition, the vanH-vanA-vanX gene cluster was identified in several other glycopeptide producers. We have also demonstrated that the VanA homologue from S. toyocaensis NRRL 15009 can synthesize d-Ala-d-Lac in vitro and in the glycopeptide-sensitive host Streptomyces lividans (15, 16). We now report the expression of the A. orientalis C329.2 VanA homologue DdlN in Escherichia coli, its purification, and its enzymatic characterization. These data reinforce the striking similarity between vancomycin resistance elements in VRE and glycopeptide-producing organisms and support the possibility of a common origin for these enzymes.

Expression, purification, and specificity of DdlN.

DdlN was overexpressed in E. coli under the control of the bacteriophage T7 promoter. The construct gave good yields of highly purified enzyme following a four-step purification procedure (Table (Table1;1; Fig. Fig.1).1). Like other dd-ligases, DdlN behaved like a dimer in solution (not shown).

TABLE 1

Purification of DdlN from E. coli BL21 (DE3)/pETDdlN
SampleProtein (mg)Activity (nmol/min)Sp act (nmol/ min/mg)Recovery (%)Purification (fold)
Lysate1248436.82100
Ammonium sulfate (20–50% saturation)67.678011.5921.7
Sephacryl S20011.682571.49811
Q Sepharose2.87422658839
Phenyl Superose0.429974835110
Open in a separate windowOpen in a separate windowFIG. 1Purification of DdlN from E. coli BL21 (DE3)/pETDdlN. Proteins were separated on an SDS–11% polyacrylamide gel and stained with Coomassie blue. Lane 1, molecular mass markers (masses are noted at the left in kilodaltons); lane 2, whole-cell lysate; lane 3, ammonium sulfate fraction (20 to 50% saturation); lane 4, Sephacryl S200; lane 5, Q Sepharose; lane 6, phenyl Superose.The amino acid substrate specificity of DdlN was assessed by incubation of 14C-d-Ala with all 20 common amino acids in the d configuration. Purified DdlN catalyzed the synthesis of d-Ala-d-Ala in addition to that of several other mixed dipeptides, including d-Ala-d-Met and d-Ala-d-Phe (Fig. (Fig.2).2). Thus, DdlN exhibits a substrate specificity which is similar to that of VanA (4), with the capacity to synthesize not only d-Ala-d-Ala but also mixed dipeptides with bulky side chains in the C-terminal position.Open in a separate windowFIG. 2Substrate specificity of DdlN. Autoradiogram from thin-layer chromatography analysis of DdlN substrate specificity. All reaction mixtures contained 2.5 mM d-Ala and 1 mM ATP, and the radiolabel was 14C-d-Ala, except where noted. Lane 1, d-Ala; lane 2, d-Lac with 14C-d-Lac label; lane 3, d,l-methionine; lane 4, dl-phenylalanine; lane 5, d-Hbut; lane 6, d-hydroxyvalerate. Letters indicate the following: A, d-Ala-d-Lac; B, d-Lac; C, d-Ala-d-Met; D, d-Ala-d-Phe; E, d-Ala-d-Hbut; F, d-Ala-d-hydroxyvalerate.Importantly, DdlN is a depsipeptide synthase with the ability to synthesize d-Ala-d-Lac, d-Ala-d-hydroxybutyrate (Hbut), and d-Ala-d-hydroxyvalerate (Fig. (Fig.2).2). However, unlike VanA (5), d-hydroxycaproate and d-phenyllactate are not substrates (not shown). Thus, DdlN is a broad-spectrum d-Ala-d-X ligase with depsipeptide synthase activity.

Characterization of d-Ala-d-X ligase activity.

Following the initial assessment of the specificity of the enzyme, several substrates were selected for quantitative analysis by evaluation of their steady-state kinetic parameters (Table (Table2).2). DdlN has two amino acid (or hydroxy acid) Km values. Steady-state kinetic plots indicated that, like other dd-ligases, the N-terminal Km (Km1) was significantly lower (higher specificity) than the C-terminal Km (Km2). Since the former value is expected to be independent of the C-terminal substrate, only Km2 values were determined and are reported here.

TABLE 2

Characterization of steady-state parameters of DdlN and VanA
LigaseSubstrateKm2 (mM)kcat (min−1)kcat/Km2 (M−1 s−1)
DdlNd-Ala21 ± 2229 ± 71.8 × 102
d-Lac0.4 ± 0.0555 ± 12.3 × 103
d-Hbut2.5 ± 0.332 ± 22.1 × 102
ATPa1.2 ± 0.271 ± 50.98 × 102
DdlMbd-Ala166 ± 27
d-Lac1.08 ± 0.10
VanAcd-Ala382951.3 × 102
d-Lac7.1942.2 × 102
d-Hbut0.601083.0 × 103
Open in a separate windowa Determined in the presence of 10 mM d-Lac. b Data from reference 16c Data from reference 5. DdlN showed good d-Ala-d-Ala ligase activity but with a very high and physiologically questionable Km2 (21 mM). On the other hand, d-Ala-d-Lac synthesis was excellent, with a 4-fold decrease in kcat, compared to d-Ala-d-Ala synthesis, which was offset by a 52-fold drop in Km that resulted in a >12-fold increase in specificity (kcat/Km2). d-Hbut was also a good substrate, with a kcat/Km2 comparable to that of d-Ala.Steady-state kinetic parameters for d-Ala-d-X formation showed trends similar to those found with both VanA and DdlN. For example, the kcat values between VanA and DdlN were virtually the same for most substrates. There were significant differences, however. For instance, while the Km2 values for d-Ala were very high for all three enzymes, DdlN does have greater affinity for d-Ala, with a 1.8- and 7.9-fold lower Km2 than those of VanA and DdlM, respectively. Additionally, the Km2 for d-Lac was 17.8- and 2.7-fold lower than those for VanA and DdlM. Thus, DdlN has a more restrictive specificity for the C-terminal residue than VanA, which is compensated for by a higher affinity for the critical substrate d-Lac.

pH dependence of peptide versus that of depsipeptide synthesis activity.

The partitioning of the syntheses of d-Ala-d-Ala and d-Ala-d-Hbut in VanA and other depsipeptide-competent dd-ligases has been shown to be pH dependent (17). Determination of the pH dependence of DdlN in synthesizing peptide versus depsipeptide (Fig. (Fig.3)3) directly paralleled the results obtained with VanA in similar experiments. At lower pHs (<7), d-Ala-d-Hbut synthesis predominates and is exclusive at a pH of <6 (Fig. (Fig.3).3). At pH 7.5, levels of synthesis of d-Ala-d-Hbut and d-Ala-d-Ala are relatively equal, while at a pH greater than 8, the capacity to synthesize peptide overtakes the capacity to synthesize depsipeptide, although the latter is never abolished. Open in a separate windowFIG. 3pH dependence of partitioning of the syntheses of peptide and depsipeptide by DdlN. (A) Autoradiogram of a thin-layer chromatography separation of the products of reaction mixtures containing 14C-D-Ala, unlabeled D-Ala, and d-Hbut. (B) Quantification of reaction products following phosphorimage analysis. Filled circles, D-Ala-d-Hbut; open circles, D-Ala-D-Ala.The partitioning of the formation of peptide versus depsipeptide as a function of pH by DdlM is comparable to that by VanA and depsipeptide-competent mutants of DdlB (17), which show essentially exclusively depsipeptide formation at lower pHs and increasing peptide formation as the pH increases. This implies a potential role for the protonated ammonium group of d-Ala2 in second-substrate recognition and suggests a mechanism for the discrimination between d-Ala and d-Lac at physiologic pH. The structural basis for this distinction remains obscure for DdlB and VanA or DdlN.

Concluding remarks.

Resistance to vancomycin and other glycopeptides is mediated through the synthesis of a peptidoglycan which does not terminate with the canonical d-Ala-d-Ala dipeptide. Thus, enterococci which exhibit the VanC phenotype, which consists of low-level, noninducible resistance to vancomycin only, have peptidoglycan terminating in d-Ala-d-Ser (19). On the other hand, bacteria which are constitutively resistant to high concentrations of glycopeptides, such as lactic acid bacteria and VRE exhibiting the VanA or VanB phenotype (high-level inducible resistance to vancomycin), incorporate the depsipeptide d-Ala-d-Lac into their cell walls (2, 12, 13). The enzymes responsible for the intracellular synthesis of d-Ala-d-Lac not surprisingly have significant amino acid sequence similarity with d-Ala-d-Ala ligases, which are responsible for d-Ala-d-Ala synthesis in all bacteria with a cell wall (9).The d-Ala-d-Lac synthases can be subdivided into two groups based on sequence homology: those found in the constitutively resistant lactic acid bacteria and those found in glycopeptide-producing organisms and VanA or VanB VRE (9, 14). The former have more similarity with exclusive d-Ala-d-Ala ligases. Indeed, single point mutations in d-Ala-d-Ala ligases which yield sequences more similar to those of lactic acid bacterium d-Ala-d-Lac ligases are sufficient to induce significant depsipeptide synthase activity in these enzymes (17). Similarly, mutational studies of the d-Ala-d-Lac ligase from Leuconostoc mesenteroides have demonstrated that the converse also holds (18). On the other hand, the molecular basis for depsipeptide synthesis by the VanA or VanB ligases is unknown, in large part due to the lack of protein structural information on which to base mutational studies, unlike the situation with d-Ala-d-Ala ligases, where the E. coli DdlB structure serves as a template for mechanistic research (11).Significantly, a major difference in the VanA or VanB ligases and other dd-ligases lies in the amino acid sequence of the ω-loop region, which closes off the active site of DdlB (11) and has been shown to contribute amino acid residues with the capacity to control the syntheses of d-Ala-d-Ala and d-Ala-d-Lac, notably, Tyr216 (17, 18). Until recently, the VanA and VanB ligases were exceptional in amino acid structure and had no known homologues. The sequencing of resistance genes from glycopeptide-producing bacteria has uncovered enzymes with >60% homology to VanA or VanB and which are virtually superimposable in the critical ω-loop region (14, 15). One of these, DdlM from S. toyocaensis NRRL 15009, has been shown to have d-Ala-d-Lac ligase ability (15, 16), although no rigorous analysis of this activity has been performed. The results presented here demonstrate that DdlN from the vancomycin producer A. orientalis C329.2 not only is a d-Ala-d-Lac ligase but also has significant functional homology with VanA. It is not known at present if, like S. toyocaensis NRRL 15009 (16), A. orientalis C329.2 also possess a d-Ala-d-Ala-exclusive ligase, though the presence of a vanX gene (14) suggests that it may.These studies demonstrate that DdlN cloned from a vancomycin-producing bacterium is a d-Ala-d-Lac ligase which has not only amino acid sequence homology with the dd-ligases from VRE but also functional homology. Thus, VanA, VanB, DdlN, and DdlM have likely evolved from similar origins. The fact that a vanH-vanA-vanX gene cluster can be found in other glycopeptide producers as well (14) suggests that the genes now found in VRE may have originated in glycopeptide-producing bacteria. Our finding that overexpressed, purified, DdlN shows many enzymatic characteristics similar (though not identical) to those of VanA suggests that the genes from glycopeptide-producing bacteria can be important in elucidating biochemical and protein structural aspects of the VRE proteins.  相似文献   

13.
1. all-trans-Retinoic acid at concentrations greater than 10−7m stimulated the incorporation of d-[3H]glucosamine into 8m-urea/5% (w/v) sodium dodecyl sulphate extracts of 1m-CaCl2-separated epidermis from pig ear skin slices cultured for 18h. The incorporation of 35SO42−, l-[14C]fucose and U-14C-labelled l-amino acids was not significantly affected. 2. Electrophoresis of the solubilized epidermis showed increased incorporation of d-[3H]glucosamine into a high-molecular-weight glycosaminoglycan-containing peak when skin slices were cultured in the presence of 10−5m-all-trans-retinoic acid. The labelling of other epidermal components with d-[3H]glucosamine, 35SO42−, l-[14C]fucose and U-14C-labelled l-amino acids was not significantly affected by 10−5m-all-trans-retinoic acid. 3. Trypsinization dispersed the epidermal cells and released 75–85% of the total d-[3H]glucosamine-labelled material in the glycosaminoglycan peak. Thus most of this material was extracellular in both control and 10−5m-all-trans-retinoic acid-treated epidermis. 4. Increased labelling of extracellular epidermal glycosaminoglycans was also observed when human skin slices were treated with all-trans-retinoic acid, indicating a similar mechanism in both tissues. Increased labelling was also found when the epidermis was cultured in the absence of the dermis, suggesting a direct effect of all-trans-retinoic acid on the epidermis. 5. Increased incorporation of d-[3H]-glucosamine into extracellular epidermal glycosaminoglycans in 10−5m-all-trans-retinoic acid-treated skin slices was apparent after 4–8h in culture and continued up to 48h. all-trans-Retinoic acid (10−5m) did not affect the rate of degradation of this material in cultures `chased' with 5mm-unlabelled glucosamine after 4 or 18h. 6. Cellulose acetate electrophoresis at pH7.2 revealed that hyaluronic acid was the major labelled glycosaminoglycan (80–90%) in both control and 10−5m-all-trans-retinoic acid-treated epidermis. 7. The labelling of epidermal plasma membranes isolated from d-[3H]glucosamine-labelled skin slices by sucrose density gradient centrifugation was similar in control and 10−5m-all-trans-retinoic acid-treated tissue. 8. The results indicate that increased synthesis of mainly extracellular glycosaminoglycans (largely hyaluronic acid) may be the first response of the epidermis to excess all-trans-retinoic acid.  相似文献   

14.
Amino acid uptake in fungi is mediated by general and specialized members of the yeast amino acid transporter (YAT) family, a branch of the amino acid polyamine organocation (APC) transporter superfamily. PrnB, a highly specific l-proline transporter, only weakly recognizes other Put4p substrates, its Saccharomyces cerevisiae orthologue. Taking advantage of the high sequence similarity between the two transporters, we combined molecular modeling, induced fit docking, genetic, and biochemical approaches to investigate the molecular basis of this difference and identify residues governing substrate binding and specificity. We demonstrate that l-proline is recognized by PrnB via interactions with residues within TMS1 (Gly56, Thr57), TMS3 (Glu138), and TMS6 (Phe248), which are evolutionary conserved in YATs, whereas specificity is achieved by subtle amino acid substitutions in variable residues. Put4p-mimicking substitutions in TMS3 (S130C), TMS6 (F252L, S253G), TMS8 (W351F), and TMS10 (T414S) broadened the specificity of PrnB, enabling it to recognize more efficiently l-alanine, l-azetidine-2-carboxylic acid, and glycine without significantly affecting the apparent Km for l-proline. S253G and W351F could transport l-alanine, whereas T414S, despite displaying reduced proline uptake, could transport l-alanine and glycine, a phenotype suppressed by the S130C mutation. A combination of all five Put4p-ressembling substitutions resulted in a functional allele that could also transport l-alanine and glycine, displaying a specificity profile impressively similar to that of Put4p. Our results support a model where residues in these positions determine specificity by interacting with the substrates, acting as gating elements, altering the flexibility of the substrate binding core, or affecting conformational changes of the transport cycle.  相似文献   

15.
1. The route of l-threonine degradation was studied in four strains of the genus Pseudomonas able to grow on the amino acid and selected because of their high l-threonine aldolase activity. Growth and manometric results were consistent with the cleavage of l-threonine to acetaldehyde+glycine and their metabolism via acetate and serine respectively. 2. l-Threonine aldolases in these bacteria exhibited pH optima in the range 8.0–8.7 and Km values for the substrate of 5–10mm. Extracts exhibited comparable allo-l-threonine aldolase activities, Km values for this substrate being 14.5–38.5mm depending on the bacterium. Both activities were essentially constitutive. Similar activity ratios in extracts, independent of growth conditions, suggested a single enzyme. The isolate Pseudomonas D2 (N.C.I.B. 11097) represents the best source of the enzyme known. 3. Extracts of all the l-threonine-grown pseudomonads also possessed a CoA-independent aldehyde dehydrogenase, the synthesis of which was induced, and a reversible alcohol dehydrogenase. The high acetaldehyde reductase activity of most extracts possibly resulted in the underestimation of acetaldehyde dehydrogenase. 4. l-Serine dehydratase formation was induced by growth on l-threonine or acetate+glycine. Constitutively synthesized l-serine hydroxymethyltransferase was detected in extracts of Pseudomonas strains D2 and F10. The enzyme could not be detected in strains A1 and N3, probably because of a highly active `formaldehyde-utilizing' system. 5. Ion-exchange and molecular exclusion chromatography supported other evidence that l-threonine aldolase and allo-l-threonine aldolase activities were catalysed by the same enzyme but that l-serine hydroxymethyltransferase was distinct and different. These results contrast with the specificities of some analogous enzymes of mammalian origin.  相似文献   

16.
d-Amino acid oxidase (DAO) is a biotechnologically attractive enzyme that can be used in a variety of applications, but its utility is limited by its relatively poor stability. A search of a bacterial genome database revealed a gene encoding a protein homologous to DAO in the thermophilic bacterium Rubrobacter xylanophilus (RxDAO). The recombinant protein expressed in Escherichia coli was a monomeric protein containing noncovalently bound flavin adenine dinucleotide as a cofactor. This protein exhibited oxidase activity against neutral and basic d-amino acids and was significantly inhibited by a DAO inhibitor, benzoate, but not by any of the tested d-aspartate oxidase (DDO) inhibitors, thus indicating that the protein is DAO. RxDAO exhibited higher activities and affinities toward branched-chain d-amino acids, with the highest specific activity toward d-valine and catalytic efficiency (kcat/Km) toward d-leucine. Substrate inhibition was observed in the case of d-tyrosine. The enzyme had an optimum pH range and temperature of pH 7.5 to 10 and 65°C, respectively, and was stable between pH 5.0 and pH 8.0, with a T50 (the temperature at which 50% of the initial enzymatic activity is lost) of 64°C. No loss of enzyme activity was observed after a 1-week incubation period at 30°C. This enzyme was markedly inactivated by phenylmethylsulfonyl fluoride but not by thiol-modifying reagents and diethyl pyrocarbonate, which are known to inhibit certain DAOs. These results demonstrated that RxDAO is a highly stable DAO and suggested that this enzyme may be valuable for practical applications, such as the determination and quantification of branched-chain d-amino acids, and as a scaffold to generate a novel DAO via protein engineering.  相似文献   

17.
Evidence for a specific glutamate/h cotransport in isolated mesophyll cells   总被引:1,自引:1,他引:0  
Mechanically isolated Asparagus sprengeri Regel mesophyll cells were suspended in 1 millimolar CaSO4. Immediate alkalinization of the medium occured on the addition of 1 millimolar concentrations of l-glutamate (Glu) and its analog l-methionine-d,l-sulfoximine (l-MSO). d-Glu and the l isomers of the protein amino acids did not elicit alkalinization. l-Glu dependent alkalinization was transient and acidification resumed after approximately 30 to 45 minutes. At pH 6.0, 5 millimolar l-Glu stimulated initial rates of alkalinization that varied between 1.3 to 4.1 nmol H+/106 cells·minute. l-Glu dependent alkalinization was saturable, increased with decreasing pH, was inhibited by carbonyl cyanide-p-trichloromethoxyphenyl hydrazone (CCCP), and was not stimulated by light. Uptake of l-[U-14C]glutamate increased as the pH decreased from 6.5 to 5.5, and was inhibited by l-MSO. l-Glu had no influence on K+ efflux. Although evidence for multiple amino acid/proton cotransport systems has been found in other tissues, the present report indicates that a highly specific l-Glu/proton uptake process is present in Asparagus mesophyll cells.  相似文献   

18.
Functional expression in heterologous hosts is often less successful for integral membrane proteins than for soluble proteins. Here, two Ambrosiozyma monospora transporters were successfully expressed in Saccharomyces cerevisiae as tagged proteins. Growth of A. monospora on l-arabinose instead of glucose caused transport activities of l-arabinose, l-arabitol, and ribitol, measured using l-[1-3H]arabinose, l-[14C]arabitol, and [14C]ribitol of demonstrated purity. A. monospora LAT1 and LAT2 genes were cloned earlier by using their ability to improve the growth of genetically engineered Saccharomyces cerevisiae on l-arabinose. However, the l-arabinose and pentitol transport activities of S. cerevisiae carrying LAT1 or LAT2 are only slightly greater than those of control strains. S. cerevisiae carrying the LAT1 or LAT2 gene fused in frame to the genes for green fluorescent protein (GFP) or red fluorescent protein (mCherry) or adenylate kinase (AK) exhibited large (>3-fold for LAT1; >20-fold for LAT2) increases in transport activities. Lat1-mCherry transported l-arabinose with high affinity (Km ≈ 0.03 mM) and l-arabitol and ribitol with very low affinity (Km ≥ 75 mM). The Lat2-GFP, Lat2-mCherry, and Lat2-AK fusion proteins could not transport l-arabinose but were high-affinity pentitol transporters (Kms ≈ 0.2 mM). The l-arabinose and pentitol transport activities of A. monospora could not be completely explained by any combination of the observed properties of tagged Lat1 and Lat2, suggesting either that tagging and expression in a foreign membrane alters the transport kinetics of Lat1 and/or Lat2 or that A. monospora contains at least one more l-arabinose transporter.  相似文献   

19.
Isolation of active mitochondria from tomato fruit   总被引:2,自引:2,他引:0       下载免费PDF全文
An improved method for isolating mitochondria from tomato fruit (Lycopersicon esculentum Mill.) is described. The fruit is chilled, and the tissue of the fruit wall cut by hand into very thin slices with a razor blade while immersed in a buffer containing 0.4 m sucrose, 2 mm MgCl2, 8 mm EDTA, 4 mm cysteine, 10 mm KCl, 0.5 mg per ml bovine serum albumin 50 mm tris-HCl, pH 7.6. The pH is monitored and kept within the range of 7.0 to 7.2 by dropwise addition of 1 n KOH during cutting. The tissue is strained through 8 layers of cheesecloth and centrifuged at 2000 × g for 15 minutes. The supernatant is then centrifuged at 11,000 × g for 20 minutes, and the sediment is washed once with a medium containing 0.4 m sucrose, 10 mm KCl, 1 mm MgCl2, 10 mm tris-HCl, 10 mm KH2PO4 and bovine serum albumin (0.5 mg per ml), pH 7.2. Electron microscope studies show that this method gives homogeneous, relatively intact mitochondria; they have a higher respiratory control ratio than those reported by other workers. The method was also tested successfully on fruits of cantaloupe and `Honey Dew' melon.  相似文献   

20.
Hemocyanin (Hc) is an oxygen carrier protein in which oxygen binding is regulated by allosteric effectors such as H+ and l-lactate. Isothermal titration calorimetric measurements showed that l-lactate binds to dodecameric and heterohexameric Hc and to the CaeSS3 homohexamer but not to the CaeSS2 monomer. The binding of lactate caused no change in the optical absorption and x-ray absorption spectra of either oxy- or deoxy-Hc, suggesting that no structural rearrangement of the active site occurred. At pH 6.5, the oxygen binding rate constant kobs obtained by flash photolysis showed a significant increase upon addition of l-lactate, whereas l-lactate addition had little effect at pH 8.3. Lactate binding caused a concentration-dependent shift in the interhexameric distances at pH 6.5 based on small angle x-ray scattering measurements. These results show that l-lactate affects oxygen affinity at pH 6.5 by modulating the global structure of Hc without affecting its binuclear copper center (the active site). In contrast to this, the active site structure of deoxy-Hc is affected by changes in pH (Hirota, S., Kawahara, T., Beltramini, M., Di Muro, P., Magliozzo, R. S., Peisach, J., Powers, L. S., Tanaka, N., Nagao, S., and Bubacco, L. (2008) J. Biol. Chem. 283, 31941–31948). Upon addiction of lactate, the kinetic behavior of oxygen rebinding for Hc was heterogeneous under low oxygen concentrations at pH 6.5 due to changes in the T and R state populations, and the equilibrium was found to shift from the T toward the R state with addition of lactate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号