首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess how cell locomotive behavior is influenced by an electrostatic interaction at the cells' contact area, locomotion speeds of mouse fibroblast, L cells, were compared on differently charged non-living substrates. These substrates were prepared by polymerizing bovine serum albumin with glutaraldehyde, and their surface charge was changed by treating them with poly- -lysine or poly- -histidine. The locomotion speeds increased with increasing negativity of the substrate charge. On the less negatively charged substrates, the cells ceased locomotion and did not alter their-positions. In spite of the diversity in the cell behavior, there was little difference in cell growth among the different substrates. When the substrates were treated with trinitrobenzene sulphonic acid (TNBS), which reacts with amino and other cationic groups, the immobilization no longer occurred. This indicates that the substrate charge is a main factor in modulating cell behavior.  相似文献   

2.
Effects of the substratum on the migration of primordial germ cells   总被引:3,自引:0,他引:3  
It is now clear from work on defined cell types on artificial substrates that various chemical and physical inhomogeneities in the substrates can guide cell locomotion. It is also becoming clear that less well defined inhomogeneities in living cell substrates can guide the normal locomotion of embryonic migratory cells in vivo. The primordial germ cells (p.g.cs) of early anuran amphibian embryos are proving a useful model for the study of cell migration. When isolated from the embryo and cultured on living cellular substrate, p.g.cs become oriented by the shapes of the underlying cells or by their stress fibre cytoskeleton, or both. A combination of scanning and transmission electron microscopy in vivo shows a clearly aligned cellular substrate for p.g.c. migration along part of their route. Furthermore, we find that the glycoprotein fibronectin is involved in p.g.c. adhesion, which suggests a link between orientation of the substrate cells and p.g.c. guidance.  相似文献   

3.
Anisotropic cell culture surfaces patterned with amino and alkylsilanes can guide cell distribution and provide an approach to study important processes involved in tissue engineering, such as cell attachment and locomotion. By combining photolithographic and silane coupling techniques, glass coverslips were patterned with either n-octadecyldimethylchlorosilane (ODDMS) or dimethyldichlorosilane (DMS), and N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (EDS). The alkylsilanes, theoretically, have similar methyl and methylene groups exposed at the surface but different structures, with DMS being amorphous and ODDMS ordered. Neuroblastoma cells, osteosarcoma cells, and fibroblasts plated on surfaces patterned with EDS/ODDMS and EDS/DMS specifically localized on the EDS regions, but distributed randomly on ODDMS/DMS patterned surfaces. The preferential assembly of cells onto EDS regions did not depend on the structure of the adjacent alkylsilane regions and was a time-dependent process. Angle dependent x-ray photoelectron spectroscopy (XPS) and contact angle measurements indicated that EDS was immobilized on glass as a fractional hydrophilic monolayer, and ODDMS and DMS were bound as patchy amorphous hydrophobic multilayers. Neither surface coverage nor thickness of the overlayer seemed to be as important as surface chemistry, or charge, in guiding mammalian cell distribution. These results are consistent with the concept that mammalian cells attach to and are guided by positively charged surfaces.  相似文献   

4.
General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.  相似文献   

5.
Cell-substrate adhesion was quantified for two cultured mesothelioma cell lines (epitheliomatus and sarcomatous) on glass, fibronectin and laminin substrates. Interference reflection microscopy (IRM) was used to image the adhesion patterns of cells and a grey level analysis was employed to quantify adhesion. Sarcomatous cells demonstrated marked adhesion to glass and fibronectin-coated substrates but not to laminin-coated substrate, with the greatest adhesion occurring on the fibronectin-coated surface. This adhesion was accompanied by cytoplasmic spreading. By contrast, epitheliomatous cells showed little tendency to adhere to any of the substrates and only showed significant spreading when in contact with the laminin substrate (P < 0.01). A bioassay was used to determine the metastatic potential of each of the cell lines. Via the intravenous route, the sarcomatous cells killed the host rats in 24.7 ± 1.5 (S.D.) days compared to 27.3 ± 0.9 (S.D.) days for the epitheliomatous cells (P < 0.01). After subcutaneous inoculation of tumour cells, the sarcomatous cells killed the host rats in 54.7 ± 0.7 (S.D.) days compared to 48.5 ± 0.5 (S.D.) days for the epitheliomatous cells (P < 0.01). We conclude that the results of the metastasis bioassays were consistent with the predicted behavior of these cell lines based on their ability to adhere to substrates in the in vitro adhesion assays.  相似文献   

6.
We demonstrate complementary differences in the behavior of B lymphoblastoid cells adhering to LFA-1 or its counter-receptor ICAM-1. The interaction of B lymphoblastoid cells with glass-supported planar bilayers bearing LFA-1 or ICAM-1 was observed by time-lapse video microscopy, and the distribution of adhesion receptors on cells interacting with the planar bilayers was studied by immunofluorescence microscopy. B lymphoblasts formed a large contact area and crawled rapidly (up to 25 microns/min) on planar bilayers bearing ICAM-1. In contrast, these cells attached to planar bilayers bearing LFA-1 through a fixed point about which the cells actively pivoted, using a single stalk-like projection. Phorbol ester-stimulated lymphoblasts, which adhere more strongly to ICAM-1-bearing substrates than unstimulated lymphoblasts, were still capable of locomotion on ICAM-1. Phorbol ester stimulation of B lymphoblasts on planar bilayers bearing LFA-1 promoted a rapid conversion from "stalk" attachment to symmetrical spreading of the cell on the substrate. Cellular LFA-1 remained uniformly distributed on the cell surface during interaction with bilayers bearing purified ICAM-1 as determined by immunofluorescence. In contrast, ICAM-1 was concentrated in the stalk-like structure through which the unstimulated B lymphoblasts adhered to LFA-1 in planar bilayers, but ICAM-1 immunofluorescence became more uniformly distributed over the cell surface within minutes of phorbol ester addition. Neither LFA-1 or ICAM-1 colocalized with the prominent staining of filamentous actin in the ruffling membrane regions. Interaction through cell surface LFA-1 and ICAM-1, 2, or 3 promotes different cellular morphologies and behaviors, the correlation of which with previously observed patterns of lymphocyte interaction with different cell types is discussed.  相似文献   

7.
The effects of Heparan Sulfate Proteoglycan (HSPG) and surface charge on the cellular interactions of the cell membrane with different substrates to determine the kinetics of cell adhesion was studied using thickness shear mode (TSM) sensor. The TSM sensor was operated at its first, third, fifth and seventh harmonics. Since the penetration depth of the shear wave decreases with increases in frequency, the multi-resonance operation of the TSM sensor was used to monitor the changes in the kinetics of the cell-substrate interaction at different distances from the sensor surface. During the sedimentation and the initial attachment of the cells on the sensor surface, the changes in the sensor resonant frequency and the magnitude response were monitored. First, HSPGs were partially digested with the enzyme Heparinase III to evaluate the effect of HSPG on the cell adhesion process. The results indicated that HSPG did not have any effect on the kinetics of the initial attachment, but it did reduce the strength of steady-state cell adhesion. Next, we investigated the effect of the electrostatic interactions of the cell membrane with the substrate on the cell adhesion. In this case, the sensor surface was coated with positively charged Poly-D-Lysine (PDL). It was observed that electrostatic interaction of the negatively charged cell membrane with the PDL surface promoted the initial cell adhesion but did not support long-term cell adhesion. The multi-resonant TSM technique was shown to be a very promising method for monitoring specific interfacial effects involving in cell adhesion process in real-time.  相似文献   

8.
The cell adhesion topography of mouse fibroblasts growing on glass substrates has been investigated. In order to compare cell adhesion on covered and uncovered glass, substrates were partly exposed to a solution with 0.1 mg/ml polylysine (300 kDa) for 15 min before incubation with cell suspension. After cultivation for 1, 3, 6, and 24 h their adhesion was visualised by total internal reflection microscopy. In the presence of polylysine, cells incubated for 1 h were strongly attracted to the substrate, leading to a typical cell adhesion topography characterised by round concavities under the ventral cell membrane with an approximate diameter of 1 μm. The cavity-surrounding rims were tightly bound to the glass surface. During further cell cultivation, the topography changed into a well-organised adhesion pattern with focal contact areas on the periphery of the cells. In contrast to the polylysine-mediated adhesion, cells growing on untreated surfaces did not exhibit the cavity-like topography at any stage of cultivation, but a more point spread adhesion with a dense clustering of contact-forming areas.  相似文献   

9.
Recently, we have developed a multiscale soft matter cell model aiming at improving the understanding of mechanotransduction mechanism of stem cells, which is responsible for information exchange between cells and their extracellular environment. In this paper, we report the preliminary results of our research on multiscale modelling and simulation of soft contact and adhesion of stem cells. The proposed multiscale soft matter cell model may be used to model soft contact and adhesion between cells and their extracellular substrates. To the authors' best knowledge, this may be the first time that a soft matter model has been developed for cell contact and adhesion. Moreover, we have developed and implemented a Lagrange-type meshfree Galerkin formulation and related computational algorithms for the proposed cell model. Comparison study with experimental data has been conducted to validate the parameters of the cell model. By using the soft matter cell model, we have simulated the soft adhesive contact process between cells and extracellular substrates. The simulation shows that the cell can sense substrate elasticity by responding it in different manners from cell spreading to cell contact configuration and molecular conformation changes.  相似文献   

10.
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conducive, to cell polarization thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cellsubstratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

11.
C Dahlgren 《Cell biophysics》1982,4(2-3):133-141
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conductive to cell polarization, thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cell-substratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

12.
G Pejler  J E Sadler 《Biochemistry》1999,38(37):12187-12195
Chymases are highly basic chymotrypsin-like serine proteases expressed exclusively by mast cells. Large amounts of chymases complexed with heparin proteoglycan (PG) are released in vivo during mast cell activation. The tight binding of chymase to heparin PG results in increased activity of the protease toward certain substrates, e.g., thrombin and MeO-Suc-Arg-Pro-Tyr-pNA (S-2586). In this study, the mechanism by which heparin PG modulates chymase activity was investigated, using thrombin and various chromogenic peptide substrates as model substrates. Incubation of thrombin with oligonucleotides that block the heparin-binding site of thrombin abolished the stimulatory effect of heparin PG on thrombin inactivation. Further, thrombin mutants with defects in their heparin-binding regions were less efficiently inactivated by chymase-heparin PG than wild type thrombin. These findings suggest a model for chymase stimulation where heparin PG may promote the chymase-catalyzed cleavage of heparin-binding substrates by simultaneously binding to both chymase and substrate. Experiments in which various chromogenic peptide substrates were utilized showed that heparin PG enhanced the activity of chymase toward positively charged peptide substrates such as S-2586, whereas the cleavage of uncharged substrates was not affected by the presence of heparin PG. On the basis of the latter findings, an alternative stimulation mechanism is discussed where heparin PG may stimulate chymase activity by blocking positively charged regions in chymase, thereby reducing the level of electrostatic repulsion between chymase and positively charged substrates.  相似文献   

13.
The adsorption of aluminum ions by Saccharomyces cerevisiae has been investigated by determining adsorption isotherms and electrophoretic mobility. The adsorption of aluminum ensures a neutralization of the cell surface charge and allows adhesion of the cells to glass and polycarbonate. Glass slides have been taken as a negatively charged model support, allowing the authors to study in detail the process of adhesion. The cells are simply pretreated by an aluminum solution near pH 4. Bringing the Al-pretreated cells in contact with the support by sedimentation and washing the support and sediment makes it possible to obtain a single, dense, regular layer of cells adhering strongly to the support. Adhesion can also be obtained from a suspension flowing parallel to a vertical support, provided the flow velocity is sufficiently small; the amount of cells immobilized per unit support area is about one-half that obtained by sedimentation. The immobilized cells show a specific activity for ethanol production from glucose which is similar to cells in suspension.  相似文献   

14.
Micropatterned materials were synthesised by photoimmobilising the sulphated hyaluronic acid, adequately functionalised with a photoreactive moiety, on glass substrates. Four different patterns (10, 25, 50 and 100 microns) were obtained. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask was well reproduced on the sample surface. Analysis of endothelial cell behaviour on these micropatterned materials was performed in terms of adhesion, locomotion and orientation. Decreasing the stripe dimensions a more fusiform shape of the adhered endothelial cells was observed. At the same time the cell locomotion and orientation were increased. Furthermore, a photoimmobilisation of stripes of HyalS (10 and 100 microns) was performed on a continuous HyalS layer, in turn immobilised on glass substrate. Being excluded a different chemistry between the stripe and the substrate, the influence of topography on the behaviour of endothelia cells was thus envisaged.  相似文献   

15.
Immunofluorescent labeling for fibronectin was largely excluded from sites of closest contact between spreading chicken gizzard fibroblasts and the substratum. This was observed by double immunofluorescent labeling of fixed cells for fibronectin and vinculin, a smooth muscle intracellular protein that is specifically associated with focal adhesion plaques, in conjunction with interference-reflection microscopy. When the cells were plated on a fibronectin-coated substratum they adhered to its surface and rapidly spread on it. The immunofluorescent labeling for fibronectin in those cultures (after fixation and triton permeabilization) was usually absent from the newly formed, vinculin-containing focal adhesion plaques. We have found, however, that the accessibility to the cell-substrate gap at the focal adhesion plaques is limited and therefore a more direct approach was adopted. We have found that cells spreading on a substrate coated with rhodamine-labeled fibronectin progressively removed the underlying protein from the substrate. The removal of fibronectin involved at least two distinct mechanisms. Part of the substrate-associated fibronectin was removed from small areas and displaced toward the cell center. The arrowhead-shaped areas from which fibronectin was removed often coincided with vinculin-rich focal contacts. We observed, however, many areas where focal contacts were found over unperturbed fibronectin carpet, as well as fibronectin-free areas with no overlapping focal contacts. The possibilities that fibronectin is actively displaced from areas of cell-substrate contact, that the focal adhesion plaques are transiently associated with these areas and their implications on the dynamics of cell spreading and locomotion are discussed. The second route of fibronectin removal from the substrate was endocytosis. The rhodamine-labeled fibronectin was found in the cells in a partial or transient association with clathrin-containing structures.  相似文献   

16.
Attempts were made to identify positively charged groups at the surfaces of Ehrlich ascites tumour (EAT) cells, and particles of polystyrene polymer which had adsorbed proteins after incubation in serum-containing culture medium. The cells and particles were treated with 2,4,6-trinitrobenzene sulphonic acid (TNBS) or 2,3-dimethylmaleic anhydride (DMA), which react with amino and other cationic groups. The increases in cell and particle anodic electrophoretic mobility were consistent with approx. 5% of the total surface charge of each, being due to positively charged groups. The effects of DMA or TNBS treatment of the cells and/or polystyrene surfaces, on the rates of cell adhesion to these surfaces were then determined. The significantly slower rates of adhesion after some modes of treatment suggest that positively charged groups at the surfaces of EAT cells play a part in their initial contact with and adhesion to, protein-coated plastic surfaces. However, quantitatively the role of cationic groups is a minor one in this part of the adhesion process.  相似文献   

17.
Thrombospondin modulates focal adhesions in endothelial cells   总被引:39,自引:15,他引:24       下载免费PDF全文
《The Journal of cell biology》1989,109(3):1309-1319
We examined the effects of thrombospondin (TSP) in the substrate adhesion of bovine aortic endothelial cells. The protein was tested both as a substrate for cell adhesion and as a modulator of the later stages of the cell adhesive process. TSP substrates supported the attachment of some BAE cells, but not cell spreading or the formation of focal adhesion plaques. In contrast, cells seeded on fibrinogen or fibronectin substrates were able to complete the adhesive process, as indicated by the formation of focal adhesion plaques. Incubation of cells in suspension with soluble TSP before or at the time of seeding onto fibronectin substrates resulted in an inhibition of focal adhesion formation. Furthermore, the addition of TSP to fully adherent cells in situ or prespread on fibronectin substrates caused a reduction in the number of cells, which were positive for focal adhesions, although there was no significant effect on cell spreading. In a dose-dependent manner, TSP reduced the number of cells with adhesion plaques to approximately 60% of control levels. The distribution of remaining adhesion plaques in TSP-treated cells was also altered: plaques were primarily limited to the periphery of cells and were not present in the central cell body, as in control cells treated with BSA. The observed effects were specific for TSP and were not observed with platelet factor 4, beta-thromboglobulin, or fibronectin. The TSP-mediated loss of adhesion plaques was neutralized by the addition of heparin, fucoidan, other heparin-binding proteins, and by a monoclonal antibody to the heparin binding domain of TSP, but not by antibodies to the core or carboxy-terminal regions of TSP. The interaction of the heparin- binding domain of TSP with cell-associated heparan sulfate appears to be an important mechanistic component for this activity of TSP. These data indicate that TSP may have a role in destabilizing cell adhesion through prevention of focal adhesion formation and by loss of preformed focal adhesions.  相似文献   

18.
Self-assembling oligopeptides are novel materials with potential bioengineering applications; this paper explores the use of one of these oligopeptides, EAK 16 II, for modifying the surface properties of cell-supporting substrates. To characterize the surface properties, thermodynamic measurements of liquid contact angle and surface free energy were correlated to atomic force microscopy (AFM) observations. A critical concentration of 0.1 mg/ml was found necessary to completely modify the surface properties of the substrate with EAK 16 II. Adhesion of a yeast cell, Candida utilis, was modified by the coating of EAK 16 II on both hydrophobic (plastic) and hydrophilic (glass) surfaces: Cell coverage was slightly enhanced on the glass substrate, but decreased significantly on the plastic substrate. This indicates that the yeast cell adhesion was mainly determined via hydrophobic interactions between the substrate and the cell wall. However, on the EAK 16 II modified glass substrate, surface roughness might be a factor in causing a slightly larger cell adhesion than that on bare glass. The morphology of adhered cells was also obtained with AFM imaging, showing a depression at the center of the cell on all substrates. Small depressions on the oligopeptide-coated surfaces and plastic substrate may indicate good water-retaining ability by the cell. There was no apparent difference in cell adhesion and morphology among cells obtained from lag, exponential and stationary growth phases.  相似文献   

19.
Human mesenchymal stem cells (hMSCs) are colony‐forming unit fibroblasts (CFU‐F) derived from adult bone marrow and have significant potential for many cell‐based tissue‐engineering applications. Their therapeutic potential, however, is restricted by their diminishing plasticity as they are expanded in culture. In this study, we used N‐isopropylacrylamide (NIPAM)‐based thermoresponsive polyelectrolyte multilayer (N‐PEMU) films as culture substrates to support hMSC expansion and evaluated their effects on cell properties. The N‐PEMU films were made via layer‐by‐layer adsorption of thermoresponsive monomers copolymerized with charged monomers, positively charged allylamine hydrochloride (PAH), or negatively charged styrene sulfonic acid (PSS) and compared to fetal bovine serum (FBS) coated surfaces. Surface charges were shown to alter the extracellular matrix (ECM) structure and subsequently regulate hMSC responses including adhesion, proliferation, integrin expression, detachment, and colony forming ability. The positively charged thermal responsive surfaces improved cell adhesion and growth in a range comparable to control surfaces while maintaining significantly higher CFU‐F forming ability. Immunostaining and Western blot results indicate that the improved cell adhesion and growth on the positively charged surfaces resulted from the elevated adhesion of ECM proteins such as fibronectin on the positively charge surfaces. These results demonstrate that the layer‐by‐layer approach is an efficient way to form PNIPAM‐based thermal responsive surfaces for hMSC growth and removal without enzymatic treatment. The results also show that surface charge regulates ECM adhesion, which in turn influences not only cell adhesion but also CFU‐forming ability and their multi‐lineage differentiation potential. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
Focal contacts, large macromolecular complexes that link the extracellular matrix and the internal cell cytoskeleton, are thought to govern cell locomotion. However, the maturation process through which focal contacts control the cellular migratory machinery by changes in size and molecular composition remain unclear. Here, we fabricated cell growth substrates that contained linear ECM strips of micron- or submicron-width in order to limit the enlargement of focal contacts. We found that NBT-II cells plated on the submicron substrate possessed smaller focal complexes that exhibited a highly dynamic turnover. These cells possessed various leading edges at multiple sites of the cell periphery, which prevented the cell from advancing. In contrast, cells grown on the micron-width substrate possessed large and stable focal adhesions. Most of these cells were elongated bipolar cells that were tethered at both ends and were immobile. Further, EGF and ROCK signaling pathways can modulate the cellular migratory responses according to the substrate guidance. On the submicron-width substrate, EGF treatment increased the focal contact size and the contractile force, causing these cells to develop one leading edge and migrate along the submicron-sized ECM paths. In contrast, inhibition of ROCK signaling decreased the focal contact size for cells plated on the micron substrate. These cells became less tethered and were able to migrate along or even across the micron-sized ECM paths. Our results indicate that formation and maturation of focal contacts is controlled by both ECM cues and intracellular signaling and they play a central role in directed cell motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号