首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of synchronizing cells by means of mitotic selection has been adapted to the human line NHIK 3025. Increase in cell number as a function of time in asynchronous and synchronous populations was studied as well as mitotic index as a function of time after selection of synchronized populations. Phase durations of the cell cycle of synchronous populations were determined by 3H-thymidine incorporation and scintillation counting. The relative phase durations of exponentially growing asynchronous populations were determined by mathematical analysis of DNA-histograms recorded by flow cytofluorimetry. Both the generation time and the various phase durations of the cell cycle were found to be the same in asynchronous and synchronous populations. It was found that NHIK 3025 cells are damaged by cooling to 4 and 0 degrees C so that cooling of selected cells in order to increase the yield would reduce the quality of the synchronized populations.  相似文献   

2.
The method of synchronizing cells by means of mitotic selection has been adapted to the human line NHIK 3025. Increase in cell number as a function of time in asynchronous and synchronous populations was studied as well as mitotic index as a function of time after selection of synchronized populations. Phase durations of the cell cycle of synchronous populations were determined by 3 H-thymidine incorporation and scintillation counting. The relative phase durations of exponentially growing asynchronous populations were determined by mathematical analysis of DNA-histograms recorded by flow cytofluorimetry. Both the generation time and the various phase durations of the cell cycle were found to be the same in asynchronous and synchronous populations. It was found that NHIK 3025 cells are damaged by cooling to 4 and 0°C so that cooling of selected cells in order to increase the yield would reduce the quality of the synchronized populations.  相似文献   

3.
Human NHIK 3025 cells, synchronized by mitotic selection, were given 2 mM thymidine, which inhibited DNA synthesis without reducing the rate of protein accumulation. After removal of the thymidine the cells proceeded towards mitosis and cell division, with an S duration 2 hours shorter than, but a G2 and M duration nearly identical to that of the control cells. If cycloheximide (1.25 m?M) was present together with thymidine, no net protein accumulation took place during the treatment, and the subsequent duration of S, G2, and M was similar to that of the untreated cells. The shortening of S seen after treatment with thymidine alone would therefore indicate that the rate of DNA synthesis depended on the amount of some preaccumulated protein. The postreplicative period in thymidine-treated cells was lengthened by cycloheximide treatment although the protein content had already been doubled. This suggests that proteins required for the traverse of this part of the cell cycle might have to be synthesized after completion of DNA replication. Shortly after removal of thymidine, the rate of protein accumulation declined markedly, indicating the existence of some mechanism for negative control of cell mass. In addition, the daughters of thymidine-treated cells had their cell cycle shortened by 2 hours. As a result, the cells had returned to balanced growth already in the first cell cycle following the induction of unbalanced growth. In conclusion, our experiments suggest that NHIK 3025 cells might require a minimum time in order to traverse the cell cycle, which is independent of cell mass.  相似文献   

4.
The cell cycle kinetics of NHIK 3025 cells, synchronized by mitotic selection, was studied in the presence of cycloheximide at concentrations (0.125-1.25 μM) which inhibited protein synthesis partially and slowed down the rate of cell cycle traverse. The median cell cycle duration was equal to the protein doubling time in both the control cells and in the cycloheximide-treated cultures at all drug concentrations. This conclusion was valid whether protein synthesis was continuously depressed by cycloheximide throughout the entire cell cycle, or temporarily inhibited during shorter periods at various stages of the cell cycle. These results may indicate that cell division does not take place before the cell has reached a critical size, or has completed a protein accumulation-dependent sequence of events. When present throughout the cell cycle, cycloheximide increased the median G1 duration proportionally to the total cell cycle prolongation. However, the entry of cells into S, once initiated, proceeded at an almost unaffected rate even at cycloheximide concentrations which reduced the rate of protein synthesis 50%. The onset of DNA synthesis seemed to take place in the cycloheximide-treated cells at a time when the protein content was lower than in the control cells. This might suggest that DNA synthesis in NHIK 3025 cells is not initiated at a critical cell mass.  相似文献   

5.
It has previously been found that human NHIK 3025 cells have a glucocortiocoid-sensitive restriction point in mid-G1 phase of the cell cycle. When these cells were synchronized by mitotic selection and exposed to dexamethasone before the restriction point, G1 phase was prolonged whereas the rest of the cell cycle was unperturbed by the hormone. These observations were confirmed by flowcytometric mesurements of synchronized cells in the present study. Cells that received dexamethasone (10?6 M) just after mitotic selection had a 4 hour prolongation of both G1 and the total cell cycle. However, the general rates of both protein synthesis and protein degradation were found not to be altered by the hormone, i.e., the rate of protein accumulation in dexamethasone exposed cells was equal to that of control cells. Dexamethasone exposed NHIK 3025 cells were found to be larger than control cells at the time of cell division. This is a direct consequence of a prolonged cell cycle duration with no change in general protein metabolism. It thus appears that the dexamethasone-induced prolongation of G1 phase is the result of a steroid-regulated G1 specific process(es) leading toward DNA replication, a process that does not alter general protein accumulation.  相似文献   

6.
Human NHIK 3025 cells growing exponentially in 30% or 3% serum had population doubling times of 19.1 and 27.6 hours, respectively. These values were equal to the calculated protein doubling times (17.6 and 26.5 hours, respectively), showing that the cells were in balanced growth at both serum concentrations. Stepdown from 30% to 3% serum reduced the rate of protein synthesis within 1–2 hours, from 5.7% hour to 4.3% hour, while the rate of protein degradation was unchanged (1.7%/hour). In cells synchronized by mitotic selection from an exponentially growing population, the median cell cycle durations in 30% and 3% serum were 17.2 and 23.6 hours, respectively, which were also in good agreement with the protein doubling times. The median G1 durations were 7.1 and 9.6 hours, respectively. Thus the duration of G1 relative to the total cell cycle duration was the same in the two cases. Complete removal of serum for a period of 3 hours resulted in a 3-hour prolongation of the cell cycle regardless of the time after mitotic selection at which the serum was removed. For synchronized cells, the rate of entry into both the S phase and into the subsequent cell cycle were reduced in 3% serum as compared to 30% serum, the former rate being significantly greater than the latter at both serum concentrations. Our results thus indicate that these cells are continuously dependent upon serum throughout the entire cell cycle.  相似文献   

7.
It has been reported that the human cell line NHIK 3025 has a specific cytoplasmic glucocorticoid receptor. When these cells were exposed to glucocorticoids, the cell cycle time was prolonged. Cells, synchronized by mitotic selection, were subjected to the synthetic glucocorticoid dexamethasone throughout the cell cycle. Only cells exposed in the first half of G1 phase had a lengthened cell cycle time. Most of the prolongation was also located within the G1 phase. The dexamethasone growth inhibition was reversible and could be detected only in the cell cycle where the cells were exposed to the steroid. DNA-histograms of asynchronous cells were recorded by flowcytometry at various times after steroid exposure. These histograms also showed G1 phase sensitivity and G1 phase prolongation after exposure to dexamethasone. Our results thus indicate that these cells have a dexamethasone-sensitive restriction point in mid-G1 phase of the cell cycle.  相似文献   

8.
The growth fraction, the cell cycle time, and the duration of the individual cell cycle phases were determined as a function of distance from the surface of multicellular spheroids of the human cell line NHIK 3025. the techniques employed were percentage of labelled mitoses and labelling index measurements after autoradiography and flow cytometric measurements of DNA histograms. to separate cell populations from the different parts of the spheroid, fractionated trypsinization was employed. The results were compared with corresponding values in NHIK 3025 cell populations grown as monolayer cultures. While practically all cells in exponentially growing monolayer populations are proliferating, the growth fraction was between 0.6 and 0.7 in the outer parts of the spheroid. the inner region was mainly occupied by a necrotic mass. the proliferating fraction of the recognizable cells in the inner region was slightly below 0.5. the mean cell cycle time of NHIK 3025 cells in monolayer culture is 18 hr. the mean cell cycle time of proliferating cells in the periphery of the spheroid was 30 hr, compared to 41 hr in the inner region (150 μm from the spheroid surface). All phases of the cell cycle were prolonged compared to populations of exponentially growing monolayer cells. Within each part of the spheroid the distribution of cell cycle times was considerably broadened compared with monolayer populations.  相似文献   

9.
Cellular and nuclear volume during the cell cycle of NHIK 3025 cells   总被引:4,自引:0,他引:4  
The distribution of cellular and nuclear volume in synchronous populations of NHIK 3025 cells, which derive from a cervix carcinoma, have been measured by electronic sizing during the first cell cycle after mitotic selection. Cells given an X-ray dose of 580 rad in G1, were also studied. During the entire cell cycle the volume distribution of both cells and nuclei is an approximately Gaussian peak with a relative width at half maximum of about 30%. About half of this width is due to imperfect synchrony whereas the rest is associated with various time invariant factors. During S the mean volume of the cells grows exponentially whereas the nuclear volume increases faster than for exponential kinetics. Hence, although cellular and nuclear volumes are closely correlated, their ratio does not remain constant during the cell cycle. Volume growth during the first half of G1 is negligible especially for nuclei where the growth appears to be closely associated with DNA-synthesis. For unirradiated cells the growth of cellular and nuclear volume is negligible also during G2 + M. In contrast, the X-irradiated cells continue to grow during the 6 hr mitotic delay with a rate that is constant and about half of that observed in late S. Hence, radiation induced mitotic delay does not appear merely as a lengthening of an otherwise normal G2. During G1 and S the irradiated cells were identical to unirradiated ones with respect to all the parameters measured.  相似文献   

10.
We have studied the effect of cell anchorage on the human cell line NHIK 3025 in vitro, to see whether the growth regulating effect of cell anchorage primarily affected DNA division cycle or mass growth cycle. It was found that cell to cell anchorage had the same effect on cell cycle progression as anchorage to a solid surface, which indicates that it is anchorage per se and not cell shape that is important for growth control in NHIK 3025 cells. When NHIK 3025 cells were grown without attachment to a solid surface, both G1 and cell cycle duration was prolonged by 6 h, which means that the prolonged cell cycle was due to a prolonged G1. During the first part of the cell cycle the rate of protein synthesis and degradation was constant, and at the same level in cells grown with and without attachment. This means that the prolonged G1 was not due to a reduced protein accumulation or mass growth. Towards the end of the cell cycle protein accumulation was reduced. This effect was either due to a size control before cell division or a secondary effect of the prolonged G1. We therefore conclude that cell anchorage as a growth regulator primarily affects the DNA/cell division cycle.  相似文献   

11.
Concentration-dependent effects of potassium dichromate on the cell cycle   总被引:1,自引:0,他引:1  
Hexavalent chromium is found to be a strong mutagen, and it also is a potential carcinogen in man. DNA flow cytometry, growth measurements, and determinations of mitotic index show that 1-2 microM K2Cr2O7 produces a prolongation of the G2 phase of the cell cycle in NHIK 3025 cells. By increasing the chromate concentrations (greater than 2 microM K2Cr2O7) the cells are also arrested in G2 phase. We have found, using synchronized cells and measuring cell cycle time, that the most chromate-sensitive part of the cell cycle is S phase. This phase is also somewhat prolonged, and the cells became arrested in early S phase at high toxic K2Cr2O7 concentrations (8 microM). Our results thus indicate that K2Cr2O7 has an effect within S phase--maybe on DNA/RNA synthesis--and also interferes with processes necessary for progression through the G2 phase.  相似文献   

12.
When exponentially growing NHIK 3025 cells were shifted from medium containing 30% serum to medium containing 0.03% serum the rate of net protein accumulation was reduced due to both a reduction in the rate of protein synthesis and an increase in the rate of protein degradation. This change in growth conditions increased the protein doubling time from 18 to 140 h. The cell cycle duration of cells synchronized by mitotic selection was, however, only increased from 17 to 26 h by this treatment. Therefore, when the cells divide by the end of the first cell cycle following synchronization, the cells shifted to 0.03% serum contained far less protein than those growing continuously in 30% serum. Hence, the attainment of a critical cell mass is probably not controlling cell division for cells growing in a balanced state.  相似文献   

13.
We have investigated whether human NHIK 3025 cells are dependent upon a net increase in cellular protein content in order to traverse G1 and S. The increase in DNA and protein content was studied by means of two-parameter flow cytometry using populations of cells synchronized by mitotic selection. By adding 1 μM cycloheximide to the medium protein synthesis was partially inhibited, resulting in negligible net accumulation of protein. The cells were able to enter S and progress through S under such conditions. The latter was the case whether the cells had been accumulating protein during G1 or not. The results further indicate that the larger cells enter S earlier and traverse S at a higher rate than the smaller cells. Our conclusion is that net accumulation of protein does not seem to be a prerequisite for traverse through G1 and S, i.e. DNA replication may be dissociated from the general growth of cell mass.  相似文献   

14.
CELLULAR AND NUCLEAR VOLUME DURING THE CELL CYCLE OF NHIK 3025 CELLS   总被引:7,自引:0,他引:7  
The distribution of cellular and nuclear volume in synchronous populations of NHIK 3025 cells, which derive from a cervix carcinoma, have been measured by electronic sizing during the first cell cycle after mitotic selection. Cells given an X-ray dose of 580 rad in G1, were also studied. During the entire cell cycle the volume distribution of both cells and nuclei is an approximately Gaussian peak with a relative width at half maximum of about 30%. About half of this width is due to imperfect synchrony whereas the rest is associated with various time invariant factors. During S the mean volume of the cells grows exponentially whereas the nuclear volume increases faster than for exponential kinetics. Hence, although cellular and nuclear volumes are closely correlated, their ratio does not remain constant during the cell cycle. Volume growth during the first half of G1 is negligible especially for nuclei where the growth appears to be closely associated with DNA-synthesis. For unirradiated cells the growth of cellular and nuclear volume is negligible also during G2+ M. In contrast, the X-irradiated cells continue to grow during the 6 hr mitotic delay with a rate that is constant and about half of that observed in late S. Hence, radiation induced mitotic delay does not appear merely as a lengthening of an otherwise normal G2. During G1 and S the irradiated cells were identical to unirradiated ones with respect to all the parameters measured.  相似文献   

15.
BACKGROUND: In an accompanying paper (Asmuth et al.) it was found necessary to include cell death explicitly to estimate parameters of cell proliferation. The use of bivariate flow cytometry to estimate the phase durations and the doubling times of cells labeled with thymidine analogues is well established. However, these methods of analysis do not consider the possibility of cell death. This report demonstrates that estimating cell death in G(2)/M is possible. METHODS: Mathematical models for the experimental quantities, the fraction of labeled undivided cells, the fraction of labeled divided cells, and the relative movement were developed. These models include the possibility that, of the cells with G(2)/M DNA content, only a certain fraction will divide, with the remainder dying after some time T(R). Simulation studies were conducted to test the possibility of using simple methods to estimate phase durations and cell death rates. RESULTS: Cell death alters the estimates of phase transit times in a rather complex manner that depends on the lifetime of the doomed cells. However, it is still possible to obtain estimates of the phase durations of cells in S and G(2)/M and the death rates of cells in G(2)/M. CONCLUSIONS: The methods presented herein provide a new way to characterize cell populations that includes cell death rates and common measurements of cell proliferation.  相似文献   

16.
Hepatocytes, isolated from adult (250-350 g) rats, attached and survived well in primary culture on highly diluted (less than 1 microgram/cm2) collagen gel in a synthetic medium without serum or hormones. About 20% of the cells "spontaneously" entered S phase during the first 4 days of culturing, and mitoses were easily demonstrated at the near physiological concentration (1.25 mM) of Ca++ prevailing in the medium. Cultures given 9 nM epidermal growth factor (EGF) and 20 nM insulin 20 h after inoculation showed vigorous DNA synthesis and mitotic activity. Autoradiography of such cells exposed to [3H]thymidine allowed the determination of the following cell cycle parameters: Lag period from EGF/insulin stimulation till onset of increased DNA synthesis, 17 h; rate of entry into S phase (kG1/S), 0.028/h; duration of S phase, 8.4 h; duration of G2 phase, 2.7 h. The peak DNA synthesis (pulse labelling index, 24%) and peak mitotic activity (mitotic index, 1.7%) occurred 35 and 43 h, respectively, after the stimulation with EGF/insulin. These values are comparable to those reported during the in vivo compensatory hyperplasia following partial hepatectomy of adult rats. A marked variation of the intranuclear [3H]thymidine pulse labelling pattern was noted: During the first 1.5 h of the S phase, the labelling was extranucleolar and during the last 1.5 h chiefly nucleolar. The cells survived well in the absence of glucocorticoid, whose effect on cell cycle parameters therefore could be studied. Dexamethasone (25-250 nM) did not appreciably affect the durations of S phase and G2 phase or the pattern of preferential extranucleolar and nucleolar DNA synthesis within the S phase.  相似文献   

17.
The effect of X-irradiation on the cell cycle progression of synchronized populations of the human cell line NHIK 3025 has been studied in terms of the radiation-induced delay of DNA replication and cell division. Results were obtained by flow cytometric measurement of histograms of cellular DNA content and parallel use of conventional methods for cell cycle analysis, such as pulse labelling with [3H]thymidine and counting of cell numbers. The two sets of methods were generally in good agreement, but the advantages of employing two independent techniques are pointed out. Irradiation was found to have a minor influence on DNA replication. As compared with unirradiated populations, half-completed DNA replication was 20--30 min delayed in populations 580 rad in mid-G1 or 290 rad in early S. Cell cycle progression was markedly delayed in G2. The sensitivity induction of this delay was 0.6 min/rad for populations irradiated in mid-G1, and 1.4 min/rad for populations irradiated in early S.  相似文献   

18.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

19.
The transit time distribution at various points in the cell cycle of synchronized Chinese hamster ovary cells was determined from the mitotic index, [3H]thymidine labeling index and increase in cell number monitored at regular intervals after mitotic selection. Variation in G1 transit time compared with that for the total cell cycle indicates that variation in cell cycle transit time occurs mainly during G1 phase. the cycloheximide (5.0 μg/ml) and actinomycin D (3.0 μg/ml) restriction points occur 0.2 and 1.7 hr prior to entry into S phase, respectively. the transit time distributions are further characterized by the moments of the distributions. the variance (2nd moment about the mean) of the transit time distribution at the actinomycin D restriction point is similar to the variance of the transit time distribution at the G1/S border, thus variation in cell cycle transit time originates earlier than 1.7 hr prior to entry into S phase (i.e., the first 3/4 of G1). If G1 transit time variability and cell cycle control are related, then the results presented here indicate that the major regulatory events do not occur during late G1 phase.  相似文献   

20.
We have studied hypoxia-induced cell cycle arrest in human cells where the retinoblastoma tumour suppressor protein (pRB) is either functional (T-47D cells) or abrogated by expression of the HPV18 E7 oncoprotein (NHIK 3025 cells). All cells in S phase are immediately arrested upon exposure to extreme hypoxia. During an 18-h extreme hypoxia regime, the cyclin A protein level is down-regulated in cells of both types when in S-phase, and, as we have previously shown, pRB re-binds in the nuclei of all T-47D cells (Amellem et al. 1996). Hence, pRB is not necessary for the down-regulation of cyclin A during hypoxia. However, our findings indicate that re-oxygenation cannot release pRB from its nuclear binding following this prolonged exposure. The result is permanent S-phase arrest even after re-oxygenation, and this is correlated with a complete and permanent down-regulation of cyclin A in the pRB functional T-47D cells. In contrast, both cell cycle arrest and cyclin A down-regulation in S phase are reversed upon re-oxygenation in non-pRB-functional NHIK 3025 cells after prolonged exposure to extreme hypoxia. Our results indicate that pRB is involved in permanent S-phase arrest and down-regulation of cyclin A after extreme hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号