首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlamydiae and chlamydiae‐related organisms are obligate intracellular bacterial pathogens. They reside in a membrane‐bound compartment termed the inclusion and have evolved sophisticated mechanisms to interact with cellular organelles. This review focuses on the nature, the function(s) and the consequences of chlamydiae–inclusion interaction with the endoplasmic reticulum (ER). The inclusion membrane establishes very close contact with the ER at specific sites termed ER–inclusion membrane contact sites (MCSs). These MCSs are constituted of a specific set of factors, including the C. trachomatis effector protein IncD and the host cell proteins CERT and VAPA/B. Because CERT and VAPA/B have a demonstrated role in the non‐vesicular trafficking of lipids between the ER and the Golgi, it was proposed that Chlamydia establish MCSs with the ER to acquire host lipids. However, the recruitment of additional factors to ER–inclusion MCSs, such as the ER calcium sensor STIM1, may suggest additional functions unrelated to lipid acquisition. Finally, chlamydiae interaction with the ER appears to induce the ER stress response, but this response is quickly dampened by chlamydiae to promote host cell survival.  相似文献   

2.
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that is the most common cause of sexually transmitted bacterial infections and is the etiological agent of trachoma, the leading cause of preventable blindness. The organism infects epithelial cells of the genital tract and eyelid resulting in a damaging inflammatory response. Chlamydia trachomatis grows within a vacuole termed the inclusion, and its growth depends on numerous host factors, including lipids. Although a variety of mechanisms are involved in the acquisition of host cell cholesterol and glycosphingolipids by C. trachomatis, none of the previously documented pathways for lipid acquisition are absolutely required for growth. Here we demonstrate that multiple components of the host high‐density lipoprotein (HDL) biogenesis machinery including the lipid effluxers, ABCA1 and CLA 1, and their extracellular lipid acceptor, apoA‐1, are recruited to the inclusion of C. trachomatis‐infected cells. Furthermore, the apoA‐1 that accumulates within the inclusion colocalizes with pools of phosphatidylcholine. Knockdown of ABCA1, which mediates the cellular efflux of cholesterol and phospholipids to initiate the formation of HDL in the serum, prevents the growth of C. trachomatis in infected HeLa cells. In addition, drugs that inhibit the lipid transport activities of ABCA1 and CLA 1 also inhibit the recruitment of phospholipids to the inclusion and prevent chlamydial growth.These results strongly suggest that C. trachomatis co‐opts the host cell lipid transport system involved in the formation of HDL to acquire lipids, such as phosphatidylcholine, that are necessary for growth.  相似文献   

3.
Bacterial pathogens that reside in membrane bound compartment manipulate the host cell machinery to establish and maintain their intracellular niche. The hijacking of inter-organelle vesicular trafficking through the targeting of small GTPases or SNARE proteins has been well established. Here, we show that intracellular pathogens also establish direct membrane contact sites with organelles and exploit non-vesicular transport machinery. We identified the ER-to-Golgi ceramide transfer protein CERT as a host cell factor specifically recruited to the inclusion, a membrane-bound compartment harboring the obligate intracellular pathogen Chlamydia trachomatis. We further showed that CERT recruitment to the inclusion correlated with the recruitment of VAPA/B-positive tubules in close proximity of the inclusion membrane, suggesting that ER-Inclusion membrane contact sites are formed upon C. trachomatis infection. Moreover, we identified the C. trachomatis effector protein IncD as a specific binding partner for CERT. Finally we showed that depletion of either CERT or the VAP proteins impaired bacterial development. We propose that the presence of IncD, CERT, VAPA/B, and potentially additional host and/or bacterial factors, at points of contact between the ER and the inclusion membrane provides a specialized metabolic and/or signaling microenvironment favorable to bacterial development.  相似文献   

4.
Chlamydia trachomatis, an obligate intracellular pathogen, survives within host cells in a special compartment named ‘inclusion’ and takes advantage of host vesicular transport pathways for its growth and replication. Rab GTPases are key regulatory proteins of intracellular trafficking. Several Rabs, among them Rab11 and Rab14, are implicated in chlamydial development. FIP2, a member of the Rab11‐Family of Interacting Proteins, presents at the C‐terminus a Rab‐binding domain that interacts with both Rab11 and Rab14. In this study, we determined and characterized the recruitment of endogenous and GFP‐tagged FIP2 to the chlamydial inclusions. The recruitment of FIP2 is specific since other members of the Rab11‐Family of Interacting Proteins do not associate with the chlamydial inclusions. The Rab‐binding domain of FIP2 is essential for its association. Our results indicate that FIP2 binds to Rab11 at the chlamydial inclusion membrane through its Rab‐binding domain. The presence of FIP2 at the chlamydial inclusion favours the recruitment of Rab14. Furthermore, our results show that FIP2 promotes inclusion development and bacterial replication. In agreement, the silencing of FIP2 decreases the bacterial progeny. C. trachomatis likely recruits FIP2 to hijack host intracellular trafficking to redirect vesicles full of nutrients towards the inclusion.  相似文献   

5.
Intracellular pathogens need to establish specialised niches for survival and proliferation in host cells. The enteropathogen Salmonella enterica accomplishes this by extensive reorganisation of the host endosomal system deploying the SPI2‐encoded type III secretion system (SPI2‐T3SS). Fusion events of endosomal compartments with the Salmonella‐containing vacuole (SCV) form elaborate membrane networks within host cells enabling intracellular nutrition. However, which host compartments exactly are involved in this process and how the integrity of Salmonella‐modified membranes is accomplished are not fully resolved. An RNA interference knockdown screen of host factors involved in cellular logistics identified the ESCRT (endosomal sorting complex required for transport) system as important for proper formation and integrity of the SCV in infected epithelial cells. We demonstrate that subunits of the ESCRT‐III complex are specifically recruited to the SCV and membrane network. To investigate the role of ESCRT‐III for the intracellular lifestyle of Salmonella, a CHMP3 knockout cell line was generated. Infected CHMP3 knockout cells formed amorphous, bulky SCV. Salmonella within these amorphous SCV were in contact with host cell cytosol, and the attenuation of an SPI2‐T3SS‐deficient mutant strain was partially abrogated. ESCRT‐dependent endolysosomal repair mechanisms have recently been described for other intracellular pathogens, and we hypothesise that minor damages of the SCV during bacterial proliferation are repaired by the action of ESCRT‐III recruitment in Salmonella‐infected host cells.  相似文献   

6.
Intracellular movements of ceramide are strongly limited by its hydrophobic nature, and the mechanisms involved in ceramide transport can represent a crucial aspect of sphingolipid metabolism and signaling. The recent identification of the ceramide specific carrier protein CERT has revealed a novel pathway for the delivery of ceramide to the Golgi apparatus for sphingomyelin biosynthesis. In this study we investigated the metabolic and functional role of CERT in C6 glioma cells. These cells were found to constitutively express CERT, the protein being mainly associated with the cytosolic fraction. Metabolic experiments performed with different radioactive metabolic precursors of sphingolipids demonstrated that the down regulation of CERT by RNAi technology resulted in a significant but not complete reduction of ceramide metabolism to sphingomyelin, without affecting its utilization for glycosphingolipid biosynthesis. Since nitric oxide is an inhibitor of ceramide ER-to-Golgi traffic and metabolism in C6 glioma cells, we evaluated the possibility that the CERT-mediated transport of ceramide might represent a target for nitric oxide. The data obtained demonstrate that CERT down regulation does not affect the inhibitory activity of nitric oxide on Cer metabolism, and the effects of nitric oxide and CERT silencing on ceramide utilization were additive. These results strongly suggest that a CERT-mediated and a CERT-independent, nitric oxide-sensitive Cer transport coexist in C6 glioma cells and can separately contribute to the control of sphingolipid metabolism and Cer levels in these cells.  相似文献   

7.
Chlamydia trachomatis (Ct) is a Gram‐negative obligate intracellular pathogen of humans that causes significant morbidity from sexually transmitted and ocular diseases globally. Ct acquires host fatty acids (FA) to meet the metabolic and growth requirements of the organism. Lipid droplets (LDs) are storehouses of FAs in host cells and have been proposed to be a source of FAs for the parasitophorous vacuole, termed inclusion, in which Ct replicates. Previously, cells devoid of LDs were shown to produce reduced infectious progeny at 24 hr postinfection (hpi). Here, although we also found reduced progeny at 24 hpi, there were significantly more progeny at 48 hpi in the absence of LDs compared to the control wild‐type (WT) cells. These findings were confirmed using transmission electron microscopy where cells without LDs were shown to have significantly more metabolically active reticulate bodies at 24 hpi and significantly more infectious but metabolically inert elementary bodies at 48 hpi than WT cells. Furthermore, by measuring basal oxygen consumption rates (OCR) using extracellular flux analysis, Ct infected cells without LDs had higher OCRs at 24 hpi than cells with LDs, confirming ongoing metabolic activity in the absence of LDs. Although the FA oleic acid is a major source of phospholipids for Ct and stimulates LD synthesis, treatment with oleic acid, but not other FAs, enhanced growth and led to an increase in basal OCR in both LD depleted and WT cells, indicating that FA transport to the inclusion is not affected by the loss of LDs. Our results show that Ct regulates inclusion metabolic activity and growth in response to host FA availability in the absence of LDs.  相似文献   

8.
Chlamydiae are Gram‐negative obligate intracellular bacteria that cause diseases with significant medical and economic impact. Chlamydia trachomatis replicates within a vacuole termed an inclusion, which is extensively modified by the insertion of a number of bacterial effector proteins known as inclusion membrane proteins (Incs). Once modified, the inclusion is trafficked in a dynein‐dependent manner to the microtubule‐organizing centre (MTOC), where it associates with host centrosomes. Here we describe a novel structure on the inclusion membrane comprised of both host and bacterial proteins. Members of the Src family of kinases are recruited to the chlamydial inclusion in an active form. These kinases display a distinct, localized punctate microdomain‐like staining pattern on the inclusion membrane that colocalizes with four chlamydial inclusion membrane proteins (Incs) and is enriched in cholesterol. Biochemical studies show that at least two of these Incs stably interact with one another. Furthermore, host centrosomes associate with these microdomain proteins in C. trachomatis‐infected cells and in uninfected cells exogenously expressing one of the chlamydial effectors. Together, the data suggest that a specific structure on the C. trachomatis inclusion membrane may be responsible for the known interactions of chlamydiae with the microtubule network and resultant effects on centrosome stability.  相似文献   

9.
Listeria monocytogenes grows in the host cytosol and uses the surface protein ActA to promote actin polymerisation and mediate actin‐based motility. ActA, along with two secreted bacterial phospholipases C, also mediates avoidance from autophagy, a degradative process that targets intracellular microbes. Although it is known that ActA prevents autophagic recognition of L. monocytogenes in epithelial cells by masking the bacterial surface with host factors, the relative roles of actin polymerisation and actin‐based motility in autophagy avoidance are unclear in macrophages. Using pharmacological inhibition of actin polymerisation and a collection of actA mutants, we found that actin polymerisation prevented the colocalisation of L. monocytogenes with polyubiquitin, the autophagy receptor p62, and the autophagy protein LC3 during macrophage infection. In addition, the ability of L. monocytogenes to stimulate actin polymerisation promoted autophagy avoidance and growth in macrophages in the absence of phospholipases C. Time‐lapse microscopy using green fluorescent protein‐LC3 macrophages and a probe for filamentous actin showed that bacteria undergoing actin‐based motility moved away from LC3‐positive membranes. Collectively, these results suggested that although actin polymerisation protects the bacterial surface from autophagic recognition, actin‐based motility allows escape of L. monocytogenes from autophagic membranes in the macrophage cytosol.  相似文献   

10.
Chlamydiae are obligate intracellular pathogens that must coordinate the acquisition of host cell-derived biosynthetic constituents essential for bacterial survival. Purified chlamydiae contain several lipids that are typically found in eukaryotes, implying the translocation of host cell lipids to the chlamydial vacuole. Acquisition and incorporation of sphingomyelin occurs subsequent to transport from Golgi-derived exocytic vesicles, with possible intermediate transport through endosomal multivesicular bodies. Eukaryotic host cell-derived sphingomyelin is essential for intracellular growth of Chlamydia trachomatis, but the precise role of this lipid in development has not been delineated. The present study identifies specific phenotypic effects on inclusion membrane biogenesis and stability consequent to conditions of sphingomyelin deficiency. Culturing infected cells in the presence of inhibitors of serine palmitoyltransferase, the first enzyme in the biosynthetic pathway of host cell sphingomyelin, resulted in loss of inclusion membrane integrity with subsequent disruption in normal chlamydial inclusion development. Surprisingly, this was accompanied by premature redifferentiation to and release of infectious elementary bodies. Homotypic fusion of inclusions was also disrupted under conditions of sphingolipid deficiency. In addition, host cell sphingomyelin synthesis was essential for inclusion membrane stability and expansion that is vital to reactivation of persistent chlamydial infection. The present study implicates both the Golgi apparatus and multivesicular bodies as key sources of host-derived lipids, with multivesicular bodies being essential for normal inclusion development and reactivation of persistent C. trachomatis infection.  相似文献   

11.
Dermanyssus gallinae is a haematophagous ectoparasite responsible for anemia, weight loss, dermatitis and a decrease in egg production. Dermanyssus gallinae may play a role in the modulation of the host immune system, maybe predisposing the host to some bacterial infections such as chlamydiosis. This is an important zoonosis. Humans are exposed to Chlamydia psittaci through inhalation of the agent dispersed from the infected birds. In this study, a syndrome observed in an aviary of canaries was investigated. A heavy infestation by D. gallinae was reported. Simultaneously, a C. psittaci infection was molecularly confirmed in the canaries. Combined therapy was applied successfully. The association of C. psittaci with the examined mites has been confirmed. Therefore, we think that D. gallinae have played a role in the spreading of C. psittaci infection among the canaries. Moreover, D. gallinae could have played an important role predisposing the canaries to the development of chlamydiosis, by inducing anemia and debilitation. The control of mites in the aviaries may represent a crucial step for the prevention of important infection such as chlamydiosis in birds and humans.  相似文献   

12.
We have previously shown that a homologue of a conserved nucleoside‐diphosphate‐kinase (Ndk) family of multifunctional enzymes and secreted molecule in Porphyromonas gingivalis can modulate select host molecular pathways including downregulation of reactive‐oxygen‐species generation to promote bacterial survival in human gingival epithelial cells (GECs). In this study, we describe a novel kinase function for bacterial effector, Pgingivalis‐Ndk, in abrogating epithelial cell death by phosphorylating heat‐shock protein 27 (HSP27) in GECs. Infection by Pgingivalis was recently suggested to increase phosphorylation of HSP27 in cancer‐epithelial cells; however, the mechanism and biological significance of antiapoptotic phospho‐HSP27 during infection has never been characterised. Interestingly, using glutathione S‐transferase‐rNdk pull‐down analysed by mass spectrometry, we identified HSP27 in GECs as a strong binder of Pgingivalis‐Ndk and further verified using confocal microscopy and ELISA. Therefore, we hypothesised Pgingivalis‐Ndk can phosphorylate HSP27 for inhibition of apoptosis in GECs. We further employed Pgingivalis‐Ndk protein constructs and an isogenic Pgingivalis‐ndk‐deficient‐mutant strain for functional examination. Pgingivalis‐infected GECs displayed significantly increased phospho‐HSP27 compared with ndk‐deficient‐strain during 24 hr infection. Phospho‐HSP27 was significantly increased by transfection of GFP‐tagged‐Ndk into uninfected‐GECs, and in vitro phosphorylation assays revealed direct phosphorylation of HSP27 at serines 78 and 82 by Pgingivalis‐Ndk. Depletion of HSP27 via siRNA significantly reversed resistance against staurosporine‐mediated‐apoptosis during infection. Transfection of recombinant Pgingivalis‐Ndk protein into GECs substantially decreased staurosporine‐induced‐apoptosis. Finally, ndk‐deficient‐mutant strain was unable to inhibit staurosporine‐induced Cytochrome C release/Caspase‐9 activation. Thus, we show for the first time the phosphorylation of HSP27 by a bacterial effector—Pgingivalis‐Ndk—and a novel function of Ndks that is directly involved in inhibition of host cell apoptosis and the subsequent bacterial survival.  相似文献   

13.

Background  

The C. elegans gene folt-1 is an ortholog of the human reduced folate carrier gene. The FOLT-1 protein has been shown to transport folate and to be involved in uptake of exogenous folate by worms. A knockout mutation of the gene, folt-1(ok1460), was shown to cause sterility, and here we investigate the source of the sterility and the effect of the folt-1 knockout on somatic function.  相似文献   

14.

Background  

Bacterial infection of the urinary tract is a common clinical problem with E. coli being the most common urinary pathogen. Bacterial uptake into epithelial cells is increasingly recognised as an important feature of infection. Bacterial virulence factors, especially fimbrial adhesins, have been conclusively shown to promote host cell invasion. Our recent study reported that C3 opsonisation markedly increases the ability of E. coli strain J96 to internalise into human proximal tubular epithelial cells via CD46, a complement regulatory protein expressed on host cell membrane. In this study, we further assessed whether C3-dependent internalisation by human tubular epithelial cells is a general feature of uropathogenic E. coli and investigated features of the bacterial phenotype that may account for any heterogeneity.  相似文献   

15.
Heterologous expression systems based on tobacco BY‐2 cells, Arabidopsis cell cultures, Xenopus oocytes, Saccharomyces cerevisiae, and human HeLa cells have been used to express and characterize PIN, ABCB (PGP), and AUX/LAX auxin transporters from Arabidopsis. However, no single system has been identified that can be used for effective comparative analyses of these proteins. We have developed an accessible Schizosaccharomyces pombe system for comparative studies of plant transport proteins. The system includes knockout mutants in all ABC and putative auxin transport genes and Gateway®‐compatible expression vectors for functional analysis and subcellular localization of recombinant proteins. We expressed Arabidopsis ABCB1 and ABCB19 in mam1pdr1 host lines under the inducible nmt41 promoter. ABCB19 showed a higher 3H‐IAA export activity than ABCB1. Arabidopsis PIN proteins were expressed in a mutant lacking the auxin effluxer like 1 (AEL1) gene. PIN1 showed higher activity than PIN2 with similar protein expression levels. Expression of AUX1 in a permease‐deficient vat3 mutant resulted in increased net auxin uptake activity. Finally, ABCB4 expressed in mam1pdr1 displayed a concentration‐dependent reversal of 3H‐IAA transport that is consistent with its observed activity in planta. Structural modelling suggests that ABCB4 has three substrate interaction sites rather than the two found in ABCB19, thus providing a rationale for the observed substrate activation. Taken together, these results suggest that the S. pombe system described here can be employed for comparative analyses and subsequent structural characterizations of plant transport proteins.  相似文献   

16.
Chlamydia, an obligate intracellular bacterium which passes its entire lifecycle within a membrane‐bound vacuole called the inclusion, has evolved a variety of unique strategies to establish an advantageous intracellular niche for survival. This review highlights the mechanisms by which Chlamydia subverts vesicular transport in host cells, particularly by hijacking the master controllers of eukaryotic trafficking, the Rab proteins. A subset of Rabs and Rab interacting proteins that control the recycling pathway or the biosynthetic route are selectively recruited to the chlamydial inclusion membrane. By interfering with Rab‐controlled transport steps, this intracellular pathogen not only prevents its own degradation in the phagocytic pathway, but also creates a favourable intracellular environment for growth and replication. Chlamydia, a highly adapted and successful intracellular pathogen, has several redundant strategies to re‐direct vesicles emerging from biosynthetic compartments that carry host molecules essential for bacterial development. Although current knowledge is limited, the latest findings have shed light on the role of Rab proteins in the course of chlamydial infections and could open novel opportunities for anti‐chlamydial therapy.  相似文献   

17.
The bacterial pathogen Listeria monocytogenes induces internalization into mammalian cells and uses actin‐based motility to spread within tissues. Listeria accomplishes this intracellular life cycle by exploiting or antagonizing several host GTPases. Internalization into human cells is mediated by the bacterial surface proteins InlA or InlB. These two modes of uptake each require a host actin polymerization pathway comprised of the GTPase Rac1, nucleation promotion factors, and the Arp2/3 complex. In addition to Rac1, InlB‐mediated internalization involves inhibition of the GTPase Arf6 and participation of Dynamin and septin family GTPases. After uptake, Listeria is encased in host phagosomes. The bacterial protein GAPDH inactivates the human GTPase Rab5, thereby delaying phagosomal acquisition of antimicrobial properties. After bacterial‐induced destruction of the phagosome, cytosolic Listeria uses the surface protein ActA to stimulate actin‐based motility. The GTPase Dynamin 2 reduces the density of microtubules that would otherwise limit bacterial movement. Cell‐to‐cell spread results when motile Listeria remodel the host plasma membrane into protrusions that are engulfed by neighbouring cells. The human GTPase Cdc42, its activator Tuba, and its effector N‐WASP form a complex with the potential to restrict Listeria protrusions. Bacteria overcome this restriction through two microbial factors that inhibit Cdc42‐GTP or Tuba/N‐WASP interaction.  相似文献   

18.
Flagella are nanofibers that drive bacterial movement. The filaments are generally composed of thousands of tightly packed flagellin subunits with a terminal cap protein, named FliD. Here, we report that the FliD protein of the bacterial pathogen Campylobacter jejuni binds to host cells. Live‐cell imaging and confocal microscopy showed initial contact of the bacteria with epithelial cells via the flagella tip. Recombinant FliD protein bound to the surface of intestinal epithelial cells in a dose‐dependent fashion. Search for the FliD binding site on the host cell using cells with defined glycosylation defects indicated glycosaminoglycans as a putative target. Heparinase treatment of wild type cells and an excess of soluble heparin abolished FliD binding. Binding assays showed direct and specific binding of FliD to heparin. Addition of an excess of purified FliD or heparin reduced the attachment of viable Cjejuni to the host cells. The host cell binding domain of FliD was mapped to the central region of the protein. Overall, our results indicate that the Cjejuni flagellar tip protein FliD acts as an attachment factor that interacts with cell surface heparan sulfate glycosaminoglycan receptors.  相似文献   

19.
Aspergillus fumigatus is an important fungal pathogen of humans. Inhaled conidia of A. fumigatus adhere to pulmonary epithelial cells, causing opportunistic infection. However, little is known about the molecular mechanism of the adherence of resting conidia. Fungal molecules adhesive to host cells are presumed to be displayed on the conidial surface during conidial formation as a result of changes in gene expression. Therefore, we exhaustively searched for adhesion molecules by comparing the phenotypes and the gene expression profiles of A. fumigatus strains that have conidia showing either high or low adherence to human pulmonary A549 cells. Morphological observation suggested that strains that produce conidia of reduced size, hydrophobicity, or number show decreased adherence to A549 cells. K‐means cluster analyses of gene expression revealed 31 genes that were differentially expressed in the high‐adherence strains during conidial formation. We knocked out three of these genes and showed that the conidia of AFUA_4G01030 (encoding a hypothetical protein) and AFUA_4G08805 (encoding a haemolysin‐like protein) knockout strains had significantly reduced adherence to host cells. Furthermore, the conidia of these knockout strains had lower hydrophobicity and fewer surface spikes compared to the control strain. We suggest that the selectively expressed gene products, including those we identified experimentally, have composite synergistic roles in the adhesion of conidia to pulmonary epithelial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号