首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detection and clearance of invading pathogens requires a coordinated response of the adaptive and innate immune system. Host cell, however, also features different mechanisms that restrict pathogen replication in a cell‐intrinsic manner, collectively referred to as cell‐autonomous immunity. In immune cells, the ability to unleash those mechanisms strongly depends on the activation state of the cell, which is controlled by cytokines or the detection of pathogen‐associated molecular patterns by pattern‐recognition receptors. The interferon (IFN) class of cytokines is one of the strongest inducers of antimicrobial effector mechanisms and acts against viral, bacterial and parasitic intracellular pathogens. This has been linked to the upregulation of several hundreds of IFN‐stimulated genes, among them the so‐called IFN‐inducible GTPases. Two subfamilies of IFN‐inducible GTPases, the immunity‐related GTPases (IRGs) and the guanylate‐binding proteins (GBPs), have gained attention due to their exceptional ability to specifically target intracellular vacuolar pathogens and restrict their replication by destroying their vacuolar compartment. Their repertoire has recently been expanded to the regulation of inflammasome complexes, which are cytosolic multi‐protein complexes that control an inflammatory cell death called pyroptosis and the release of cytokines like interleukin‐1β and interleukin‐18. Here we discuss recent advances in understanding the function, the targeting and regulation of IRG and GBP proteins during microbial infections.  相似文献   

2.
3.
Pathogenic and commensal Gram‐negative bacteria produce and release outer membrane vesicles (OMVs), which present several surface antigens and play an important role for bacterial pathogenesis. OMVs also modulate the host immune system, which makes them attractive as vaccine candidates. At the cellular level, OMVs are internalized by macrophages and deliver lipopolysaccharide (LPS) into the host cytosol, thus activating the caspase‐11 non‐canonical inflammasome. Here, we show that OMV‐induced inflammasome activation requires TLR4‐TRIF signaling, the production of type I interferons, and the action of guanylate‐binding proteins (GBPs), both in macrophages and in vivo. Mechanistically, we find that isoprenylated GBPs associate with the surface of OMVs or with transfected LPS, indicating that the key factor that determines GBP recruitment to the Gram‐negative bacterial outer membranes is LPS itself. Our findings provide new insights into the mechanism by which GBPs target foreign surfaces and reveal a novel function for GBPs in controlling the intracellular detection of LPS derived from extracellular bacteria in the form of OMVs, thus extending their function as a hub between cell‐autonomous immunity and innate immunity.  相似文献   

4.
Most bacterial pathogens enter and exit eukaryotic cells during their journey through the vertebrate host. In order to endure inside a eukaryotic cell, bacterial invaders commonly employ bacterial secretion systems to inject host cells with virulence factors that co‐opt the host's membrane trafficking systems and thereby establish specialised pathogen‐containing vacuoles (PVs) as intracellular niches permissive for microbial growth and survival. To defend against these microbial adversaries hiding inside PVs, host organisms including humans evolved an elaborate cell‐intrinsic armoury of antimicrobial weapons that include noxious gases, antimicrobial peptides, degradative enzymes, and pore‐forming proteins. This impressive defence machinery needs to be accurately delivered to PVs, in order to fight off vacuole‐dwelling pathogens. Here, I discuss recent evidence that the presence of bacterial secretion systems at PVs and the associated destabilisation of PV membranes attract such antimicrobial delivery systems consisting of sugar‐binding galectins as well as dynamin‐like guanylate‐binding proteins (GBPs). I will review recent advances in our understanding of intracellular immune recognition of PVs by galectins and GBPs, discuss how galectins and GBPs control host defence, and highlight important avenues of future research in this exciting area of cell‐autonomous immunity.  相似文献   

5.
Pathogenesis‐related proteins played a pioneering role 50 years ago in the discovery of plant innate immunity as a set of proteins that accumulated upon pathogen challenge. The most abundant of these proteins, PATHOGENESIS‐RELATED 1 (PR‐1) encodes a small antimicrobial protein that has become, as a marker of plant immune signaling, one of the most referred to plant proteins. The biochemical activity and mode of action of PR‐1 proteins has remained elusive, however. Here, we provide genetic and biochemical evidence for the capacity of PR‐1 proteins to bind sterols, and demonstrate that the inhibitory effect on pathogen growth is caused by the sequestration of sterol from pathogens. In support of our findings, sterol‐auxotroph pathogens such as the oomycete Phytophthora are particularly sensitive to PR‐1, whereas sterol‐prototroph fungal pathogens become highly sensitive only when sterol biosynthesis is compromised. Our results are in line with previous findings showing that plants with enhanced PR‐1 expression are particularly well protected against oomycete pathogens.  相似文献   

6.
A hallmark of positive‐sense RNA viruses is the formation of membranous shelters for safe replication in the cytoplasm. Once considered invisible to the immune system, these viral shelters are now found to be antagonized through the cooperation of autophagy proteins and anti‐microbial GTPases. This coordinated effort of autophagy proteins guiding GTPases functions against not only the shelters of viruses but also cytoplasmic vacuoles containing bacteria or protozoa, suggesting a broad immune‐defense mechanism against disparate vacuolar pathogens. Fundamental questions regarding this process remain: how the host recognizes these membranous structures as a target, how the autophagy proteins bring the GTPases to the shelters, and how the recruited GTPases disrupt these shelters. In this review, these questions are discussed, the answers to which will significantly advance our understanding of the response to vacuole‐like structures of pathogens, thereby paving the way for the development of broadly effective anti‐microbial strategies for public health.  相似文献   

7.
Analyses of arthropod genomes have shown that the genes in the different innate humoral immune responses are conserved. These genes encode proteins that are involved in immune signalling pathways that recognize pathogens and activate immune responses. These immune responses include phagocytosis, encapsulation of the pathogen and production of effector molecules for pathogen elimination. So far, most studies have focused on insects leaving other major arthropod groups largely unexplored. Here, we annotate the immune‐related genes of six arachnid genomes and present evidence for a conserved pattern of some immune genes, but also evolutionary changes in the arachnid immune system. Specifically, our results suggest that the family of recognition molecules of beta‐1,3‐glucanase‐related proteins (βGRPs) and the genes from the immune deficiency (IMD) signalling pathway have been lost in a common ancestor of arachnids. These findings are consistent with previous work suggesting that the humoral immune effector proteins are constitutively produced in arachnids in contrast to insects, where these have to be induced. Further functional studies are needed to verify this. We further show that the full haemolymph clotting cascade found in the horseshoe crab is retrieved in most arachnid genomes. Tetranychus lacks at least one major component, although it is possible that this cascade could still function through recruitment of a different protein. The gel‐forming protein in horseshoe crabs, coagulogen, was not recovered in any of the arachnid genomes; however, it is possible that the arachnid clot consists of a related protein, spätzle, that is present in all of the genomes.  相似文献   

8.
Interferon-inducible GTPases of the Immunity Related GTPase (IRG) and Guanylate Binding Protein (GBP) families provide resistance to intracellular pathogenic microbes. IRGs and GBPs stably associate with pathogen-containing vacuoles (PVs) and elicit immune pathways directed at the targeted vacuoles. Targeting of Interferon-inducible GTPases to PVs requires the formation of higher-order protein oligomers, a process negatively regulated by a subclass of IRG proteins called IRGMs. We found that the paralogous IRGM proteins Irgm1 and Irgm3 fail to robustly associate with “non-self” PVs containing either the bacterial pathogen Chlamydia trachomatis or the protozoan pathogen Toxoplasma gondii. Instead, Irgm1 and Irgm3 reside on “self” organelles including lipid droplets (LDs). Whereas IRGM-positive LDs are guarded against the stable association with other IRGs and GBPs, we demonstrate that IRGM-stripped LDs become high affinity binding substrates for IRG and GBP proteins. These data reveal that intracellular immune recognition of organelle-like structures by IRG and GBP proteins is partly dictated by the missing of “self” IRGM proteins from these structures.  相似文献   

9.
The immunity-related GTPases (IRGs) are a family of proteins induced by interferon-γ that play a crucial role in innate resistance to intracellular pathogens. The M subfamily of IRG proteins (IRGM) plays a profound role in this context, in part because of the ability of its members to regulate the localization and expression of other IRG proteins. We present here evidence that IRGM proteins affect the localization of the guanylate-binding proteins (GBPs), a second family of interferon-induced GTP-binding proteins that also function in innate immunity. Absence of Irgm1 or Irgm3 led to accumulation of Gbp2 in intracellular compartments that were positive for both the macroautophagy (hereafter referred to as autophagy) marker LC3 and the autophagic adapter molecule p62/Sqstm1. Gbp2 was similarly relocalized in cells in which autophagy was impaired because of the absence of Atg5. Both in Atg5- and IRGM-deficient cells, the IRG protein Irga6 relocalized to the same compartments as Gbp2, raising the possibility of a common regulatory mechanism. However, other data indicated that Irga6, but not Gbp2, was ubiquitinated in IRGM-deficient cells. Similarly, coimmunoprecipitation studies indicated that although Irgm3 did interact directly with Irgb6, it did not interact with Gbp2. Collectively, these data suggest that IRGM proteins indirectly modulate the localization of GBPs through a distinct mechanism from that through which they regulate IRG protein localization. Further, these results suggest that a core function of IRGM proteins is to regulate autophagic flux, which influences the localization of GBPs and possibly other factors that instruct cell-autonomous immune resistance.  相似文献   

10.
Guanylate-binding proteins (GBPs) belong to the dynamin family of large GTPases and represent the major IFN-γ-induced proteins. Here we systematically investigated the mechanisms regulating the subcellular localization of GBPs. Three GBPs (GBP-1, GBP-2 and GBP-5) carry a C-terminal CaaX-prenylation signal, which is typical for small GTPases of the Ras family, and increases the membrane affinity of proteins. In this study, we demonstrated that GBP-1, GBP-2 and GBP-5 are prenylated in vivo and that prenylation is required for the membrane association of GBP-1, GBP-2 and GBP-5. Using co-immunoprecipitation, yeast-two-hybrid analysis and fluorescence complementation assays, we showed for the first time that GBPs are able to homodimerize in vivo and that the membrane association of GBPs is regulated by dimerization similarly to dynamin. Interestingly, GBPs could also heterodimerize. This resulted in hierarchical positioning effects on the intracellular localization of the proteins. Specifically, GBP-1 recruited GBP-5 and GBP-2 into its own cellular compartment and GBP-5 repositioned GBP-2. In addition, GBP-1, GBP-2 and GBP-5 were able to redirect non-prenylated GBPs to their compartment in a prenylation-dependent manner. Overall, these findings prove in vivo the ability of GBPs to dimerize, indicate that heterodimerization regulates sub-cellular localization of GBPs and underscore putative membrane-associated functions of this family of proteins.  相似文献   

11.
Ras-related protein in brain (Rab) GTPases, the subfamily of small GTP-binding proteins superfamily, play a vital role in regulating and controlling vesicles' transport between different membrane-bound organelles. As the first-line defense against invading pathogens, the host's innate immune system recognizes various pathogen-associated molecular patterns through a series of membrane-bound or cytoplasmic pathogen recognition receptors to activate the downstream signaling pathway and induce the type I interferons (IFN-I). Numerous studies have demonstrated that Rab GTPases participate in innate immunity by regulating transmembrane signals' transduction and the transport, adhesion, anchoring, and fusion of vesicles. However, the underlying mechanism of Rab GTPases regulating innate immunity is not entirely understood. A comprehensive understanding of the interplay between the Rab GTPases and innate immunity will help develop novel therapeutics against microbial infections and chronic inflammations.  相似文献   

12.
Iwona Wojda 《Insect Science》2017,24(3):342-357
Investigation of insect immune mechanisms provides important information concerning innate immunity, which in many aspects is conserved in animals. This is one of the reasons why insects serve as model organisms to study virulence mechanisms of human pathogens. From the evolutionary point of view, we also learn a lot about host–pathogen interaction and adaptation of organisms to conditions of life. Additionally, insect‐derived antibacterial and antifungal peptides and proteins are considered for their potential to be applied as alternatives to antibiotics. While Drosophila melanogaster is used to study the genetic aspect of insect immunity, Galleria mellonella serves as a good model for biochemical research. Given the size of the insect, it is possible to obtain easily hemolymph and other tissues as a source of many immune‐relevant polypeptides. This review article summarizes our knowledge concerning G. mellonella immunity. The best‐characterized immune‐related proteins and peptides are recalled and their short characteristic is given. Some other proteins identified at the mRNA level are also mentioned. The infectious routes used by Galleria natural pathogens such as Bacillus thuringiensis and Beauveria bassiana are also described in the context of host–pathogen interaction. Finally, the plasticity of G. mellonella immune response influenced by abiotic and biotic factors is described.  相似文献   

13.
Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co‐immunoprecipitation (Co‐IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co‐IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co‐localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH‐sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR‐1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase‐mediated vesicular secretion of antimicrobial PR‐1, PDF1.2 and possibly other defence‐related compounds.  相似文献   

14.
昆虫免疫识别与病原物免疫逃避机理研究进展   总被引:1,自引:0,他引:1  
昆虫在长期进化过程中形成复杂的天然免疫系统,病原识别是启动下游免疫反应的第一步,这一过程主要是由不同的模式识别蛋白来完成的。目前发现并鉴定的昆虫模式识别蛋白主要包括肽聚糖识别蛋白、类免疫球蛋白、β-1,3-葡聚糖结合蛋白、C型凝集素及具多功能的载脂蛋白等,不同的蛋白种类具有不同的结构、功能及识别对象。与昆虫免疫识别相对应的是,不同昆虫病原物在进化过程中发展出不同策略的免疫逃避能力,以战胜宿主免疫而致病或最终杀死昆虫。本文就昆虫免疫过程中不同模式识别蛋白的结合对象、结构与功能,以及逐渐兴起的病原物通过分子伪装等进行免疫逃避的研究进展进行了综述。并在此基础上,作者就昆虫免疫与昆虫病理研究的发展方向进行了展望,认为只有当两方面研究相结合时,才能更好地揭示昆虫宿主与病原物之间免疫与抗免疫的动态相互作用过程。  相似文献   

15.
Autophagy and proteasomal degradation constitute the two main catabolic pathways in cells. While the proteasome degrades primarily short-lived soluble proteins, macroautophagy, the main constitutive autophagic pathway, delivers cell organelles and protein aggregates for lysosomal degradation. Both the proteasome and macroautophagy are attractive effector mechanisms for the immune system because they can be used to degrade foreign substances, including pathogenic proteins, within cells. Therefore, both innate and adaptive immune responses use these pathways for intracellular clearance of pathogens as well as for presentation of pathogen fragments to the adaptive immune system. Because, however, the same mechanisms are used for the steady-state turnover of cellular self-components, the immune system has to be desensitized not to recognize these. Therefore, proteasomal degradation and macroautophagy are also involved in tolerizing the immune system prior to pathogen encounter. We will discuss recent advances in our understanding how macroautophagy selects self-structures in the steady state, how presentation of these on major histocompatibility complex class II molecules leads to tolerance and how macroautophagy assists both innate and adaptive immunity. This new knowledge on the specialized functions of the metabolic process macroautophagy in higher eukaryotes should allow us to target it for therapy development against immunopathologies and to improve vaccinations.  相似文献   

16.
A major cost of group‐living is its inherent risk of pathogen infection. To limit this risk, many group‐living animals have developed the capability to prophylactically boost their immune system in the presence of group members and/or to mount collective defences against pathogens. These two phenomena, called density‐dependent prophylaxis and social immunity, respectively, are often used to explain why, in group‐living species, individuals survive better in groups than in isolation. However, this survival difference may also reflect an alternative and often overlooked process: a cost of social isolation on individuals’ capability to fight against infections. Here, we disentangled the effects of density‐dependent prophylaxis, social immunity and stress of social isolation on the survival after pathogen exposure in group‐living adults of the European earwig Forficula auricularia. By manipulating the presence of group members both before and after pathogen exposure, we demonstrated that the cost of being isolated after infection, but not the benefits of social immunity or density‐dependent prophylaxis, explained the survival of females. Specifically, females kept constantly in groups or constantly isolated had higher survival rates than females that were first in groups and then isolated after infection. Our results also showed that this cost of social isolation was absent in males and that social isolation did not reduce the survival of noninfected individuals. Overall, this study gives a new perspective on the role of pathogens in social evolution, as it suggests that an apparently nonadaptive, personal immune process may promote the maintenance of group‐living under pathogenic environments.  相似文献   

17.
郭晓雨  刘俊  汪天 《西北植物学报》2015,35(7):1488-1496
植物为了抵御病原菌的侵染而进化出一套独特的先天免疫系统,它主要通过定位在细胞膜或细胞质上的受体介导并激活下游抗病基因表达而实现,但在这些信号传递过程中,细胞质的信号向核传递需要核质运输相关元件的参与。虽然目前只有个别核质运输的信号元件被证实参与了植物的先天免疫信号传递过程,但越来越多的研究表明核质运输是连接抗病基因表达和信号识别受体的一个主要方式。研究发现,病原菌的效应因子也可以利用植物核质运输机制侵入到宿主细胞核内,调控敏感基因的表达,干扰植物的免疫反应。该文对近年来国内外有关植物的核质运输机制、各层次免疫反应需要核质运输作用、核质运输相关蛋白在免疫反应中的作用等方面对核质运输参与植物先天免疫反应研究的研究进展进行综述,并指出该领域未来研究的主要内容和方向。  相似文献   

18.
高等植物进化出大量膜表面和胞内免疫受体以感知各种病原信号,抵御病原物入侵。其中,细胞表面的模式识别受体感知模式分子后激活基础免疫反应,核苷酸结合和富亮氨酸重复蛋白(NLRs)则通过感知病原微生物分泌的效应蛋白激活特异免疫反应,导致超敏反应与细胞死亡。该文主要综述了NLRs对效应蛋白的识别、植物免疫激活及下游信号调控的最新研究进展。  相似文献   

19.
Plant recognition and defence against pathogens employs a two‐tiered perception system. Surface‐localized pattern recognition receptors (PRRs) act to recognize microbial features, whereas intracellular nucleotide‐binding leucine‐rich repeat receptors (NLRs) directly or indirectly recognize pathogen effectors inside host cells. Employing the tomato PRR LeEIX2/EIX model system, we explored the molecular mechanism of signalling pathways. We identified an NLR that can associate with LeEIX2, termed SlNRC4a (NB‐LRR required for hypersensitive response‐associated cell death‐4). Co‐immunoprecipitation demonstrates that SlNRC4a is able to associate with different PRRs. Physiological assays with specific elicitors revealed that SlNRC4a generally alters PRR‐mediated responses. SlNRC4a overexpression enhances defence responses, whereas silencing SlNRC4 reduces plant immunity. Moreover, the coiled‐coil domain of SlNRC4a is able to associate with LeEIX2 and is sufficient to enhance responses upon EIX perception. On the basis of these findings, we propose that SlNRC4a acts as a noncanonical positive regulator of immunity mediated by diverse PRRs. Thus, SlNRC4a could link both intracellular and extracellular immune perceptions.  相似文献   

20.
Plant pathogens use effector proteins to target host processes involved in pathogen perception, immune signalling, or defence outputs. Unlike foliar pathogens, it is poorly understood how root-invading pathogens suppress immunity. The Avr2 effector from the tomato root- and xylem-colonizing pathogen Fusarium oxysporum suppresses immune signalling induced by various pathogen-associated molecular patterns (PAMPs). It is unknown how Avr2 targets the immune system. Transgenic AVR2 Arabidopsis thaliana phenocopies mutants in which the pattern recognition receptor (PRR) co-receptor BRI1-ASSOCIATED RECEPTOR KINASE (BAK1) or its downstream signalling kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) are knocked out. We therefore tested whether these kinases are Avr2 targets. Flg22-induced complex formation of the PRR FLAGELLIN SENSITIVE 2 and BAK1 occurred in the presence and absence of Avr2, indicating that Avr2 does not affect BAK1 function or PRR complex formation. Bimolecular fluorescence complementation assays showed that Avr2 and BIK1 co-localize in planta. Although Avr2 did not affect flg22-induced BIK1 phosphorylation, mono-ubiquitination was compromised. Furthermore, Avr2 affected BIK1 abundance and shifted its localization from nucleocytoplasmic to the cell periphery/plasma membrane. Together, these data imply that Avr2 may retain BIK1 at the plasma membrane, thereby suppressing its ability to activate immune signalling. Because mono-ubiquitination of BIK1 is required for its internalization, interference with this process by Avr2 could provide a mechanistic explanation for the compromised BIK1 mobility upon flg22 treatment. The identification of BIK1 as an effector target of a root-invading vascular pathogen identifies this kinase as a conserved signalling component for both root and shoot immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号