首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Several factors may inhibit the activity of IFNs. Some of these occur naturally, others are therapy-induced or artificial. Naturally occurring antibodies appear to have a much broader reactivity than therapy-induced antibodies. Naturally induced antibodies are reported in patients suffering from chronic graft-versus-host disease after bone marrow transplantation. Differences in the reported immunogenicity between interferons may not be due to the minor variation in amino acid sequence. The clinical significance of therapy-induced antibodies has been unclear. In patients treated for chronic hepatitis C, antibody formation is closely related to relapse. In animal studies the efficacy of treatments targeting the IFN receptor interaction has been shown. Soluble IFN- receptor inhibits the development of autoimmune diseases in mice. Monoclonal antibodies to the IFN- receptor protects against allograft rejections in monkeys. Two naturally occurring inhibitors of IFN action were reported. The clinical significance and structure of these inhibitors remain elusive.  相似文献   

2.
猪流行性腹泻病毒 (PEDV) 能抑制宿主Ⅰ型干扰素及其诱导的细胞抗病毒免疫应答,但是PEDV抑制Ⅰ型干扰素应答的分子机制尚不明了,尤其是PEDV非结构蛋白 (Nonstructural proteins,nsps) 在Ⅰ型干扰素应答中的调控作用研究不多。为研究PEDV非结构蛋白1 (nsp1) 对细胞Ⅰ型干扰素应答的影响,构建了真核表达载体pCAGGS-nsp1,采用Western blotting和间接免疫荧光试验确定nsp1在细胞中的表达。通过报告基因法、ELISA以及病毒复制抑制试验评估nsp1对Ⅰ型IFN的影响。结果显示,nsp1在转染细胞和病毒感染细胞中均高效表达;双荧光报告基因试验结果表明,nsp1能显著抑制IFN-β启动子活性,且具有剂量依赖性。ELISA结果显示,nsp1能显著抑制IFN-β蛋白的表达。水泡性口炎病毒 (VSV) 复制抑制试验结果显示,nsp1明显抑制poly(I:C)介导的Ⅰ型IFN的抗病毒作用。结果提示,nsp1作为PEDV的保守蛋白,具有拮抗Ⅰ型干扰素启动子活性和应答的功能,为揭示PEDV逃逸宿主天然免疫应答的机制和研发新型高效抗PEDV疫苗奠定基础。  相似文献   

3.
  相似文献   

4.
Type I interferons (IFNs) elicit antiviral, antiproliferative and immunomodulatory properties in cells. All of them bind to the same receptor proteins, IFNAR1 and IFNAR2, with different affinities. While the 13 known IFNalphas are highly conserved, the C-terminal unstructured tail was found to have large variation in its net charge, from neutral to +4. This led us to speculate that the tail may have a role in modulation of the IFN biological activity, through fine-tuning the binding to IFNAR2. To evaluate this hypothesis, we replaced the tail of IFNalpha2 with that of IFNalpha8 and IFNbeta tails, or deleted the last five residues of this segment. Mutations to the more positively charged tail of IFNalpha8 resulted in a 20-fold higher affinity to IFNAR2, which results in a higher antiviral and antiproliferative activity. Double and multiple mutant cycle analysis placed the tail near a negatively charged loop on IFNAR2, comprising of residues Glu 132-134. Deleting the tail resulted in only twofold reduction in binding compared to the wild-type. Next, we modeled the location of the tail using a two-step procedure: first we generated 200 models of the tail docked on IFNAR2 using HADDOCK, second the models were scored according to the fit between experimentally determined rates of association of nine mutant complexes, and their calculated rates using the PARE software. From the results we suggest that the unstructured tail of IFNalpha is gaining a specific structure in the bound state, binding to a groove below the 132-134 loop in IFNAR2.  相似文献   

5.
    
Retinoic acid-inducible gene-I (RIG-I) functions as an intracellular pattern recognition receptor (PRR) that recognizes the 5’-triphosphate moiety of single-stranded RNA viruses to initiate the innate immune response. Previous studies have shown that Lys63-linked ubiquitylation is required for RIG-I activation and the downstream anti-viral type I interferon (IFN-I) induction. Herein we reported that, RIG-I was also modified by small ubiquitin-like modifier-1 (SUMO-1). Functional analysis showed that RIG-I SUMOylation enhanced IFN-I production through increased ubiquitylation and the interaction with its downstream adaptor molecule Cardif. Our results therefore suggested that SUMOylation might serve as an additional regulatory tier for RIG-I activation and IFN-I signaling.  相似文献   

6.
Extensive research on antiviral small molecules starting in the early 1970s has led to the identification of 10‐carboxymethyl‐9‐acridanone (CMA) as a potent type I interferon (IFN) inducer. Up to date, the mode of action of this antiviral molecule has remained elusive. Here we demonstrate that CMA mediates a cell‐intrinsic type I IFN response, depending on the ER‐resident protein STING. CMA directly binds to STING and triggers a strong antiviral response through the TBK1/IRF3 route. Interestingly, while CMA displays extraordinary activity in phosphorylating IRF3 in the murine system, CMA fails to activate human cells that are otherwise responsive to STING ligands. This failure to activate human STING can be ascribed to its inability to bind to the C‐terminal ligand‐binding domain of human STING. Crystallographic studies show that two CMA molecules bind to the central Cyclic diguanylate ( c‐diGMP)‐binding pocket of the STING dimer and fold the lid region in a fashion similar, but partially distinct, to c‐diGMP. Altogether, these results provide novel insight into ligand‐sensing properties of STING and, furthermore, unravel unexpected species‐specific differences of this innate sensor.  相似文献   

7.
The growth of a virulent strain of fixed rabies virus, Nishigahara, in mouse neuroblastoma NA cells treated with type I interferon (IFN) was compared with that of a derivative avirulent strain, Ni-CE. Nishigahara strain was slightly sensitive to IFN treatment but still grew more efficiently than did Ni-CE strain in IFN-treated NA cells. Furthermore, a virulent chimeric virus with the phosphoprotein gene from Nishigahara strain in the Ni-CE genome was less sensitive to IFN treatment than was Ni-CE strain, indicating that the IFN sensitivity is determined by the phosphoprotein gene of the virus.  相似文献   

8.
9.
10.
    
Advanced age is a significant risk factor during viral infection due to an age-associated decline in the immune response. Older individuals are especially susceptible to severe neuroinvasive disease after West Nile virus (WNV) infection. Previous studies have characterized age-associated defects in hematopoietic immune cells during WNV infection that culminate in diminished antiviral immunity. Situated amongst immune cells in the draining lymph node (DLN) are structural networks of nonhematopoietic lymph node stromal cells (LNSCs). LNSCs are comprised of numerous, diverse subsets, with critical roles in the coordination of robust immune responses. The contributions of LNSCs to WNV immunity and immune senescence are unclear. Here, we examine LNSC responses to WNV within adult and old DLNs. Acute WNV infection triggered cellular infiltration and LNSC expansion in adults. Comparatively, aged DLNs exhibited diminished leukocyte accumulation, delayed LNSC expansion, and altered fibroblast and endothelial cell subset composition, signified by fewer LECs. We established an ex vivo culture system to probe LNSC function. Adult and old LNSCs both recognized an ongoing viral infection primarily through type I IFN signaling. Gene expression signatures were similar between adult and old LNSCs. Aged LNSCs were found to constitutively upregulate immediate early response genes. Collectively, these data suggest LNSCs uniquely respond to WNV infection. We are the first to report age-associated differences in LNSCs on the population and gene expression level during WNV infection. These changes may compromise antiviral immunity, leading to increased WNV disease in older individuals.  相似文献   

11.
    
Viral infection triggers host innate immune responses, which primarily include the activation of type I interferon (IFN) signaling and inflammasomes. Here, we report that Zika virus (ZIKV) infection triggers NLRP3 inflammasome activation, which is further enhanced by viral non‐structural protein NS1 to benefit its replication. NS1 recruits the host deubiquitinase USP8 to cleave K11‐linked poly‐ubiquitin chains from caspase‐1 at Lys134, thus inhibiting the proteasomal degradation of caspase‐1. The enhanced stabilization of caspase‐1 by NS1 promotes the cleavage of cGAS, which recognizes mitochondrial DNA release and initiates type I IFN signaling during ZIKV infection. NLRP3 deficiency increases type I IFN production and strengthens host resistance to ZIKVin vitro and in vivo. Taken together, our work unravels a novel antagonistic mechanism employed by ZIKV to suppress host immune response by manipulating the interplay between inflammasome and type I IFN signaling, which might guide the rational design of therapeutics in the future.  相似文献   

12.
Lysine 63 (K63)-linked ubiquitination of RIG-I plays a critical role in the activation of type I interferon pathway, yet the molecular mechanism responsible for its deubiquitination is still poorly understood. Here we report that the deubiquitination enzyme ubiquitin-specific protease 3 (USP3) negatively regulates the activation of type I interferon signaling by targeting RIG-I. Knockdown of USP3 specifically enhanced K63-linked ubiquitination of RIG-I, upregulated the phosphorylation of IRF3 and augmented the production of type I interferon cytokines and antiviral immunity. We further show that there is no interaction between USP3 and RIG-I-like receptors (RLRs) in unstimulated or uninfected cells, but upon viral infection or ligand stimulation, USP3 binds to the caspase activation recruitment domain of RLRs and then cleaves polyubiquitin chains through cooperation of its zinc-finger Ub-binding domain and USP catalytic domains. Mutation analysis reveals that binding of USP3 to polyubiquitin chains on RIG-I is a prerequisite step for its cleavage of polyubiquitin chains. Our findings identify a previously unrecognized role of USP3 in RIG-I activation and provide insights into the mechanisms by which USP3 inhibits RIG-I signaling and antiviral immunity.  相似文献   

13.
    
《Molecular cell》2023,83(1):90-104.e4
  1. Download : Download high-res image (171KB)
  2. Download : Download full-size image
  相似文献   

14.
    
  相似文献   

15.
    
Viral RNA represents a pattern molecule that can be recognized by RNA sensors in innate immunity. Humans and mice possess cytoplasmic DNA/RNA sensors for detecting viral replication. There are a number of DEAD (Asp‐Glu‐Ala‐Asp; DExD/H) box‐type helicases in mammals, among which retinoic acid‐inducible gene 1 (RIG‐I) and melanoma differentiation‐associated protein 5 (MDA50) are indispensable for RNA sensing; however, they are functionally supported by a number of sensors that directly bind viral RNA or replicative RNA intermediates to convey signals to RIG‐I and MDA5. Some DEAD box helicase members recognize DNA irrespective of the origin. These sensors transmit IFN‐inducing signals through adaptors, including mitochondrial antiviral signaling. Viral double‐stranded RNAs are reportedly sensed by the helicases DDX1, DDX21, DHX36, DHX9, DDX3, DDX41, LGP2 and DDX60, in addition to RIG‐I and MDA5, and induce type I IFNs, thereby blocking viral replication. Humans and mice have all nucleic acid sensors listed here. In the RNA sensing system in chicken, it was found in the present study that most DEAD box helicases are conserved; however, DHX9 is genetically deficient in addition to reported RIG‐I. Based on the current genome databases, similar DHX9 deficiency was observed in ducks and several other bird species. Because chicken, but not duck, was found to be deficient in RIG‐I, the RNA‐sensing system of chicken lacks RIG‐I and DHX9 and is thus more fragile than that of duck or mammal. DHX9 may generally compensate for the function of RIG‐I and deficiency of DHX9 possibly participates in exacerbations of viral infection such as influenza in chickens.  相似文献   

16.
An optimized procedure was developed for production of the extracellular domain encoding amino acids 1–243 of the human type I interferon receptor 2c subunit (IFNAR-2c) as a fusion protein with glutathione S-transferase (GST-IFNAR2cEC) in E. coli to obtain active, soluble protein. Induction of protein expression at 37 °C resulted in a formation of inclusion body. Co-expression with bacterial chaperones, GroEL and GroES, failed to support the folding of GST-IFNAR2cEc under IPTG induction at 37 °C. Expression induced at 25 °C decreased the inclusion body formation up to 62% and cell disruption by a French press provided higher recovery of the recombinant protein than cell disruption by sonication.  相似文献   

17.
18.
19.
    
The biological activities of type I interferons (IFNs) are mediated by their binding to a heterodimer receptor complex (IFNAR1 and IFNAR2), resulting in the activation of the JAK (JAK1 and TYK2)-STAT (1, 2, 3, 5 isotypes) signalling pathway. Although several studies have indicated that IFN-alpha and IFN-beta can activate complexes containing STAT6, the biological role of this activation is still unknown. We found that exposure of hepatoma cells (HuH7 and Hep3B) to IFN-alpha or IFN-beta led to the activation of STAT6. Activated STAT6 in turn induced the formation of STAT2: STAT6 complexes, which led to the secretion of IL-1Ra. The activation of STAT6 by type I IFN in hepatocytes was mediated by JAK1 and Tyk2. In addition, IFN-alpha or IFN-beta significantly enhanced the stimulatory effect of IL-1beta on production of IL-1Ra. The present study suggests a novel function of IFN-alpha and IFN-beta signalling in human hepatocytes. Our results provide evidence for the mechanism how IFN-alpha and IFN-beta modulate inflammatory responses through activation of STAT6 and production of secreted IL-1Ra.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号