首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Native cytochrome b5 interacts with either RLM5 or LM2 to form tight equimolar complexes (Kd = 250 and 540 nM, respectively) in which the content of high spin cytochrome P-450 was substantially increased. Cytochrome b5 caused 3- and 7-fold increases in the binding affinities of RLM5 and LM2 for benzphetamine, respectively, and benzphetamine decreased the apparent Kd for cytochrome b5 binding. Upon formation of the ternary complex between cytochromes P-450, b5, and benzphetamine the percentage of cytochrome P-450 in the high spin state was increased from 28 to 74 (RLM5) and from 9 to 85 (LM2). Cytochrome b5 caused 13- and 7-fold increases in the rate of RLM5- and LM2-dependent p-nitroanisole demethylation, respectively. Amino-modified (ethyl acetimidate or acetic anhydride) cytochrome b5 produced results similar to those obtained above with native cytochrome b5. In contrast, modification of as few as 5 mol of carboxyl groups/mol of amidinated cytochrome b5 resulted in both a substantial loss of the spectrally observed interactions with either cytochrome P-450 LM2 or cytochrome P-450 RLM5, and in a loss of the cytochrome b5-mediated stimulation of p-nitroanisole demethylation catalyzed by either monooxygenase. In further studies, native and fully acetylated cytochromes b5 reoxidized carbonmonoxy ferrous LM2 at least 20 times faster than amidinated, carboxyl-modified cytochrome b5 derivatives. In contrast, amidination, or acetylation of amino groups, or amidination of amino groups plus methylamidination of the carboxyl groups did not appreciably slow the rate of reduction of the cytochrome b5 by NADPH-cytochrome P-450 reductase. Collectively, the results provide strong evidence for an essential role of cytochrome b5 carboxyl groups in functional interactions with RLM5 and LM2.  相似文献   

2.
A protein-protein association of cytochrome P-450 LM2 with NADPH-cytochrome P-450 reductase, with cytochrome b5, and with both proteins was demonstrated in reconstituted phospholipid vesicles by magnetic circular dichroism difference spectra. A 23% decrease in the absolute intensity of the Soret band of the magnetic CD spectrum of cytochrome P-450 was observed when it was reconstituted with reductase. A difference spectrum corresponding to a 7% decrease in absolute intensity was obtained when cytochrome b5 was incorporated into vesicles that already contained cytochrome P-450 and cytochrome P-450 reductase compared to a decrease of 13% in absolute intensity when cytochrome b5 was incorporated into vesicles that contained only cytochrome P-450. The use of the magnetic circular dichroism confirmed that protein-protein associations that have been detected by absorption spectroscopy between purified and detergent-solubilized proteins also exist in membranes. High ionic strength was shown to interrupt direct electron flow from cytochrome P-450 reductase to cytochrome P-450 but not the electron flow from reductase through cytochrome b5 to cytochrome P-450. Upon incorporation of cytochrome b5 into cytochrome P-450- and cytochrome P-450 reductase-containing vesicles, an increase of benzphetamine N-demethylation activity was observed. The magnitude of this increase was numerically identical to the residual activity of the reconstituted vesicles measured in the presence of 0.3 M KCl. It is concluded that there is a requirement for at least one charge pairing for electron transfer from reductase to cytochrome P-450. These observations are combined in a proposed mechanism of coupled reversible association reactions in the membrane.  相似文献   

3.
Modification of cytochrome P-450 with fluorescein isothiocyanate   总被引:1,自引:0,他引:1  
Fluorescein isothiocyanate (FITC) has been shown to be selectively attached to the N-terminus of cytochrome P-450 LM2. The N-demethylase activity of cytochrome P-450 LM2 reconstituted systems modified in this way was inhibited by 25%. As revealed by CD measurements the overall conformation as well as the immediate heme environment of cytochrome P-450 LM2 remained unchanged after attachment of the FITC molecule. The binding affinity of modified cytochrome P-450 LM2 toward benzphetamine and aniline and the cumene hydroperoxide- or H2O2-supported N-demethylation of benzphetamine are maintained. However, the introduction of the electron via NADPH-cytochrome P-450 reductase (EC 1.6.2.4) is impaired after modification of the alpha-amino group. The extent of reduced modified cytochrome P-450 LM2 in the cytochrome P-450 reductase-supported reduction reaction is diminished and the half-time of the reduction is increased. The diminished reducibility is ascribed to steric hindrance of groups directly involved in the interaction between cytochrome P-450 LM2 and NADPH-cytochrome P-450 reductase or to blocking of the charge-pair interactions between the alpha-amino group of P-450 LM2 and the respective negatively charged group of NADPH-cytochrome P-450 reductase. By energy-transfer measurements distances between the heme and the alpha-amino group of 2.65 and 3.97 nm for the oligomeric and the monomeric forms of P-450 LM2, respectively, have been determined.  相似文献   

4.
Procedures are described for the isolation of two forms of rabbit liver microsomal liver microsomal cytochrome P-450 (P-450LM) in homogeneous state. They are designated by their relative electrophoretic mobilities on polyacrylamide gel in the presence of sodium dodecyl sulfate as P-450LM2 and P-450LM4. P-450LM2, which was isolated from phenobarbital-induced animals, has a subunit molecular weight of 48,700. The best preparations contain 20 nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. P-450LM4, which is induced by beta-naphthoflavone but is also present in phenobarbital-induced and untreated animals, was isolated from all three sources and found to have a subunit molecular weight of 55,300. The best preparations contain 17nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. Some of the purified preparations of the cytochromes, although electrophoretically homogeneous, contain apoenzyme due to heme loss during purification. The purified proteins contain no detectable NADPH-cytochrome P-450 reductase, cytochrome b5, or NADH-cytochrome b5 reductase, and only low levels of phospholipid (about 1 molecule per subunit). Amino acid analysis indicated that P-450LM2 and P-450LM4 are similar in composition, but the latter protein has about 60 additional residues. The COOH-terminal amino acid of P-450LM2 is arginine, as shown by carboxypeptidase treatment, whereas that of P-450LM4 is lysine. NH2-terminal amino acid residues could not be detected. Carbohydrate analysis indicated that both cytochromes contain 1 residue of glucosamine and 2 of mannose per polypeptide subunit. The optical spectra of the oxidized and reduced cytochromes and carbon monoxide complexes were determined. Oxidized P-450LM2 has maxima at 568, 535, and 418 nm characteristic of a low spin hemeprotein, and P450LM4 from beta-naphthoflavone-induced, phenobarbital-induced, or control microsomes has maxima at 645 and 394 nm, characteristic of the high spin state. The spectrum of -450lm4 becomes similar to that of P-450LM2 at high protein concentrations or upon the addition of detergent (Renex), whereas the spectrum of P-450LM2 is unaffected by the protein concentration or the presence of detergent. Electron paramagnetic resonance spectrometry of the purified cytochromes indicated that oxidized -450lm2 is in the low spin state, whereas P-450LM4 is largely, but not entirely, in the high spin state.  相似文献   

5.
Chemical modification of cytochrome P-450 reductase was used to determine the involvement of charged amino acids in the interaction between the reductase and two forms of cytochrome P-450. Acetylation of 11 lysine residues of the reductase with acetic anhydride yielded a 20-40% decrease in the apparent Km of the reductase for cytochrome P-450b or cytochrome P-450c using either 7-ethoxycoumarin or benzphetamine as substrates. A 20-45% decrease in the Vmax was observed except for cytochrome P-450b with 7-ethoxycoumarin as substrate, where there was a 27% increase. Modification of carboxyl groups on the reductase with 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and methylamine, glycine methyl ester, or taurine as nucleophiles inhibited the interaction with the cytochromes P-450. We were able to modify 4.0, 7.9, and 5.9 carboxyl groups using methylamine, glycine methyl ester, or taurine, respectively. The apparent Km for cytochrome P-450c or cytochrome P-450b was increased 1.3- to 5.2-fold in a reconstituted monooxygenase assay with 7-ethoxycoumarin or benzphetamine as substrate. There were varied effects on the Vmax. There was no significant change in the conformation of the reductase upon chemical modification with either acetic anhydride or EDC. These results strongly suggest that electrostatic interactions as well as steric constraints play a role in the binding and electron transfer step(s) between the reductase and cytochrome P-450.  相似文献   

6.
Carboxyl groups of NADPH-cytochrome P-450 reductase have been modified with the water-soluble carbodiimide EDC. Although there is no significant loss in DCPIP reduction the activity with cytochrome c and cytochrome P-450 LM2 as electron acceptors was inhibited by about 60 and 85%, respectively (1 h incubation time, 20 mM EDC). The inactivation by EDC was nearly completely prevented in the presence of cytochrome P-450 LM2, but not by bovine serum albumin. These results and crosslinking studies suggest that carboxyl groups of NADPH-cytochrome P-450 reductase are involved in charge-pair interactions to cytochrome c and to at least two amino groups of cytochrome P-450 LM2.  相似文献   

7.
The interaction between NADPH-cytochrome P-450 reductase and a series of cytochrome P-450 isozymes was investigated using UV-visible spectrophotometry. In the absence of substrate the interactions between the reductase and RLM3, RLM5, and RLM5a were tight, exhibiting sub-micromolar dissociation constants and resulted in type I spectra of varying magnitude from which the following increases in the proportion of high spin hemoprotein were calculated; RLM3 (7%), RLM5 (36%), RLM5a (6%), LM2 (29%), RLM2 (0%). Preincubation of LM2 with its type I substrate benzphetamine increased the affinity of the cytochrome for the reductase. Using initial estimates of the P-450 spin states in the absence of reductase in conjunction with the spectral binding data and equations relating these parameters to the microequilibria for the association of reductase with high or low spin P-450, RLM3, RLM5, RLM5a and LM2 were shown to bind significantly more tightly to high spin P-450. The relevance of this data to the understanding of spin state influence on P-450 reduction is discussed.  相似文献   

8.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome.  相似文献   

9.
The hydroxylation of prostaglandin (PG) E1, PGE2, and PGA1 was investigated in a reconstituted rabbit liver microsomal enzyme system containing phenobarbital-inducible isozyme 2 or 5,6-benzoflavone-inducible isoenzyme 4 of P-450, NADPH-cytochrome P-450 reductase, phosphatidylcholine, and NADPH. Significant metabolism of prostaglandins by isozyme 2 occurred only in the presence of cytochrome b5. Under these conditions, PGE1 hydroxylation was linear with time (up to 45 min) and protein concentration, and maximal rates were obtained with a 1:1:2 molar ratio of reductase: cytochrome b5:P-450LM2. Moreover, P-450LM2 catalyzed the conversion of PGE1, PGE2, and PGA1 to the respective 19- and 20-hydroxy metabolites in a ratio of about 5:1, and displayed comparable activities toward the three prostaglandins based on the total products formed in 60 min. Apocytochrome b5 or ferriheme could not substitute for intact cytochrome b5, while reconstitution of apocytochrome b5 with ferriheme led to activities similar to those obtained with the native cytochrome. Isozyme 4 of P-450 differed markedly from isozyme 2 in that it catalyzed prostaglandin hydroxylation at substantial rates in the absence of cytochrome b5, was regiospecific for position 19 of all three prostaglandins, and had an order of activity of PGA1 greater than PGE1 greater than PGE2. P-450LM4 preparations from untreated and induced animals had similar activities with PGE1 and PGE2, respectively. Addition of cytochrome b5 resulted in a 20 to 30% increase in the rate of PGE1 hydroxylation and an appreciably greater enhancement in the extent of all the P-450LM4-catalyzed reactions, the stimulation being greatest with PGE2 (3-fold) and least with PGA1 (1.6-fold). Cytochrome b5 was thus required for maximal metabolism of all three prostaglandins, but did not alter the regiospecificity or the order of activity of P-450 isozyme 4 with the individual substrates. In the presence of cytochrome b5, the prostaglandin hydroxylase activities of isozyme 4 were two to six times higher than those of isozyme 2.  相似文献   

10.
The detergent 1-O-n-octyl-beta-D-glucopyranoside (octylglucoside) was found to replace the phospholipid requirement in the demethylation of benzphetamine by cytochrome P-450LM2 and NADPH-cytochrome P-450 reductase purified from phenobarbital-treated rabbit liver. At low enzyme concentration (0.1 microM) in the absence of glycerol and phosphate, the maximum rate of benzphetamine-specific NADPH oxidation was approximately 35% of that observed in the presence of dilauroylglyceryl-3-phosphoryl choline. At higher enzyme concentration (2.5 microM) and in the presence of 0.15 M phosphate, 20% glycerol, octylglucoside was as effective as phospholipid in stimulating the production of formaldehyde from benzphetamine. The detergent concentration required for maximal enzymatic activity was 2.5-4.0 g/liter, depending on the cytochrome preparation used. At higher octylglucoside concentrations (5-7 g/liter), activity decreased to zero, although neither enzyme appeared to be irreversibly denatured at these detergent concentrations. Sedimentation equilibrium experiments with P-450LM2 alone or in the presence of equimolar reductase showed that increasing octylglucoside levels promoted disaggregation of the cytochrome. Pentamers and hexamers predominated at detergent concentrations where maximal activity was observed, while higher levels of detergent where activity was absent produced cytochrome dimers and, ultimately, monomers. The reductase was monomeric at detergent levels between at least 3 and 7 g/liter. Moreover, both gel filtration and sedimentation equilibrium experiments demonstrated that a stable complex between P-450LM2 and its reductase was not formed at octylglucoside concentrations where high activity was evident. These results are consistent with a model of P-450/reductase interaction in which functional aggregates of three to six cytochrome polypeptides move laterally in the microsomal membrane and interact with the reductase by random collision.  相似文献   

11.
Highly specific antibodies against hemeprotein were obtained by immunizing rabbits with a highly purified cholesterol-hydroxylating cytochrome P-450scc from adrenocortical mitochondria. The antibodies do not specifically interact with other components of the adrenocortical electron transport chain, e. g., adrenodoxin reductase and adrenodoxin. Using double immunodiffusion technique (Ouchterlony method), it was shown that the antibodies did not precipitate the microsomal cytochromes P-450 LM2 and LM4, cytochrome b5 and 11 beta-hydroxylating cytochrome P-450 from adrenocortical mitochondria. Antibodies against cytochrome P-450scc inhibited the cholesterol side chain cleavage activity of cytochrome P-450scc in a reconstituted system. Limited proteolysis with trypsin and immunoelectrophoresis in the presence of specific antibodies revealed that antigenic determinants are present of the heme-containing catalytic domain of cytochrome P-450scc (F1) as well as on the domain responsible for the interaction with the phospholipid membrane (F2).  相似文献   

12.
Some new relations between cytochrome P-450-dependent monooxygenases were discovered. Cytochrome b5, a representative of "microsomal" monooxygenases, was shown to form a highly specific complex with cytochrome P-450scc, a member of the "ferredoxin" monooxygenase family. This interaction is characterized by a dissociation constant, Kd, of 0.28 microM. The cytochrome P-450scc-cytochrome b5 complex may be cross-linked with water-soluble carbodiimide. Using proteolytic modification of cytochrome b5, it was shown that both hydrophilic and hydrophobic fragments of cytochrome b5 are involved in the interaction with cytochrome P-450scc. Cytochrome b5 immobilized via amino groups is an effective affinity matrix for cytochrome P-450scc purification. The role of some amino acid residues in cytochrome P-450scc interaction with cytochrome b5 was studied. The role and the nature of complexes in cytochrome P-450-dependent monooxygenases as well as interrelationships between "microsomal" and "ferredoxin" monooxygenases are discussed.  相似文献   

13.
The zwitterionic detergent 3-(3-cholamidopropyl)-dimethylammonio-1-propanesulfonate (CHAPS) supports reconstituted cyclohexane hydroxylase activity of cytochrome P-450LM2 and NADPH-cytochrome reductase purified from phenobarbital-induced rabbit liver. Maximum activity (approximately 50% of that with phospholipid) was observed at 2 mM CHAPS. Inhibition took place at higher CHAPS, until at 20 mM CHAPS, no cyclohexane hydroxylase activity was observed. There was little denaturation of the two enzymes under these conditions. At 2 mM CHAPS, P-450LM2 was pentameric (Mr = 250,000) and reductase was dimeric (Mr = 139,500) by sedimentation equilibrium. P-450 was monomeric in 20 mM CHAPS. In addition, a stable complex between the two enzymes was not detected under conditions of maximum activity, even in the presence of saturating substrate. This confirms our previous conclusion that a stable complex between cytochrome P-450LM2 and NADPH-cytochrome P-450 reductase is not a prerequisite for reconstituted xenobiotic hydroxylation (Dean, W. L., and Gray, R. D. (1982) J. Biol. Chem. 257, 14679-14685). Difference spectra of ferric P-450LM2 revealed that below 5 mM CHAPS, the high spin form of the cytochrome was slightly stabilized, while higher CHAPS levels stabilized the low spin form. Monomeric P-450LM2 formed with 20 mM CHAPS catalyzed the hydroxylation of toluene by cumene hydroperoxide. Thus, the reason that monomeric cytochrome P-450LM2 was inactive in NADPH-supported hydroxylation may either be because the bound detergent blocked productive interaction of the cytochrome with reductase or the monomer may be intrinsically incapable of interaction with reductase.  相似文献   

14.
A series of fourteen cytochrome P-450 isoenzymes was treated with three different protein kinases and found to divide into isoenzymes phosphorylated by both the cyclic AMP-dependent kinase and the calcium-phospholipid-dependent kinase (P-450 PB 3a and PB 2e), by none of these kinases (P-450 PB 1b, MC 1b, UT 1, and thromboxane synthase), and by either the cyclic AMP-dependent kinase (P-450 LM 2, PB 2d, and PB 3b) or the calcium-phospholipid-dependent kinase (P-450 PB 1a, PB 2a, MC 1a, LM 3c, and LM 4). Other components of the monooxygenase system, cytochrome P-450 reductase, cytochrome b5, cytochrome b5 reductase as well as microsomal epoxide hydrolase, were poor substrates for the kinases employed. On the other hand, glutathione transferases 1-2 and 4-4, but not 3-3, were relatively good substrates for the calcium-phospholipid-dependent kinase.  相似文献   

15.
The effects of cytochrome b5 on the decay of the ferrous dioxygen complexes of P-450LM2 and P-450LM4 from rabbit liver microsomes were studied by stopped-flow spectrophotometry. The P-450 (FeIIO2) complexes accept an electron from reduced cytochrome b5 and, in a reaction not previously described, donate an electron to oxidized cytochrome b5 to give ferric P-450. A comparison with the electron-transferring properties of ferrous P-450 under anaerobic conditions allowed determination of the limiting steps of the two reactions involving the oxygenated complex. The rate of decay of the dioxygen complex was increased in all cases with b5 present; however, with oxidized b5 a large increase in the rate was observed with P-450 isozyme 4 but not with isozyme 2, whereas the opposite situation was found when reduced b5 was used. The reactions between b5 and ferrous dioxygen P-450 were not at thermodynamic equilibrium under the conditions employed. From the results obtained, a model is proposed in which the ferrous dioxygen complex decomposes rapidly into another species differing from ferric P-450 in its spectral properties and from the starting complex in its electron-transferring properties. A scheme is presented to indicate how competition among spontaneous decay, cytochrome b5 oxidation, and cytochrome b5 reduction by the ferrous O2 complex may influence substrate hydroxylation.  相似文献   

16.
S L Wagner  W L Dean  R D Gray 《Biochemistry》1987,26(8):2343-2348
Hydroxylation of acetanilide catalyzed by purified cytochrome P-450LM4 and NADPH-cytochrome P-450 reductase was reconstituted with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). The optimum rate of production of 4-hydroxyacetanilide was observed between 3 and 7 mM CHAPS and was about half that with 0.05 mM dilauroylglyceryl-3-phosphocholine (di-12-GPC). At higher detergent concentrations, hydroxylase activity decreased until at 15-20 mM CHAPS the system was inactive. The effect of CHAPS on the state of aggregation of P-450LM4 and on interaction between the cytochrome and P-450 reductase alone and under turnover conditions was investigated by ultracentrifugation. At 4 mM CHAPS, P-450LM4 was hexameric to heptameric (Mr 369,000). Neither reductase nor reductase plus acetanilide and NADPH altered the state of P-450LM4 aggregation, suggesting that a stable 1:1 P-450/reductase complex did not form under turnover conditions. Replacing CHAPS with 0.05 mM di-12-GPC resulted in formation of heterogeneous P-450 oligomers (Mr greater than 480,000). At CHAPS concentrations where substrate hydroxylation did not occur (15 and 22 mM), P-450LM4 was shown by sedimentation equilibrium measurements to be dimeric and monomeric, respectively. P-450 reductase was shown to reduce monomeric P-450LM4 in the presence of NADPH. Thus, the dependence of hydroxylase activity on [CHAPS] may be related to the state of aggregation of the cytochrome. An apparent correlation between P-450 aggregation state and NADPH-supported hydroxylation was also observed with phenobarbital-inducible P-450LM2 in the presence of detergents [Dean, W.L., & Gray, R.D. (1982) J. Biol. Chem. 257, 14679-14685; Wagner, S.L., Dean, W.L., & Gray, R.D. (1984) J. Biol. Chem. 259, 2390-2395].  相似文献   

17.
The glycosylation states of five rat hepatic microsomal cytochrome P-450 isozymes (cytochromes P-450a, P-450b, P-450c, P-450d, and P-450e) were examined by quantitative carbohydrate analysis. Carbohydrate content of the purified enzymes as determined by acid hydrolysis, reduction, and gas chromatography of the alditol acetates revealed only trace amounts of neutral and amino hexoses in each of the five isozymes. Levels of mannose ranged from 0.3 to 1.7 mol/mol of cytochrome P-450 whereas levels of galactose were less than or equal to 0.2 mol/mol of cytochrome P-450 for the five hemoproteins. The amino sugars glucosamine and galactosamine were usually present at levels less than or equal to 0.2 mol/mol of cytochrome P-450, although one preparation of cytochrome P-450b had as much as 0.5 mol of glucosamine/mol of cytochrome P-450. Other carbohydrate residues (xylose and arabinose) were not detected in significant quantities. Since N- and O-glycosylation of proteins occurs primarily through N-acetylglucosaminyl and N-acetylgalactosaminyl residues, respectively, the lack of significant amounts of these amino sugars indicates that these five cytochrome P-450 isozymes are not normally glycosylated in the native state. Purified NADPH-cytochrome c reductase, which functions as an electron donor for microsomal cytochrome P-450, contained no detectable quantities of hexose sugars.  相似文献   

18.
A procedure was developed for the purification of an acetone-inducible form of cytochrome P-450 (P-450ac) to electrophoretical homogeneity from liver microsomes of acetone-treated rats. The P-450ac preparation containing 16.0 to 16.5 nmol P-450/mg protein moved as a single protein band with an estimated molecular weight of 52,000 upon gel electrophoresis in the presence of sodium dodecyl sulfate. The ferric P-450ac showed an absorption maximum at 394 nm at 25 degrees C, suggesting that it exists mainly in the high-spin form. It also existed in the low-spin form, especially at lower temperatures, as indicated by the absorption maximum in the 412-nm region. Upon reconstitution with NADPH: cytochrome P-450 reductase and phospholipid, P-450ac efficiently catalyzed both the demethylation and denitrosation of N-nitrosodimethylamine (NDMA) showing Vmax values of 23.8 and 2.3 nmol min-1 nmol P-450-1, respectively. The catalytic activity of P-450ac was greatly affected by cytochrome b5 which decreased the Km values of these reactions by a factor of 10 and increased the Vmax values. Cytochrome b5 appeared to interact with P-450 at a molar ratio of 1:1 and an intact cytochrome b5 structure was required for such interaction. Among the substrates studied, the demethylation of NDMA was affected the most by cytochrome b5 and showed the highest rate. P-450ac also catalyzed the oxygenation of N-nitrosomethylethylamine and aniline and the activity was enhanced slightly by cytochrome b5. Cytochrome b5 did not enhance the P-450ac-catalyzed metabolism of other drug substrates such as benzphetamine, aminopyrine, and ethylmorphine. P-450ac appeared to be similar in property to the previously studied rat P-450et (ethanol-inducible), rat P-450j (isoniazid-inducible), and rabbit P-450LM3a (ethanol-inducible). These P-450 species represent a new class of P-450 isozymes that are important in the metabolism of many endobiotics and xenobiotics.  相似文献   

19.
Cytochrome P-450 LM2 purified from rabbit liver microsomes has been shown to be a substrate for cAMP-dependent protein kinase. Cytochrome b5, in contrast, was a very poor substrate for cAMP-dependent protein kinase, although it stimulated the activity of the kinase toward histone. When purified rabbit cytochrome b5 was mixed with purified LM2, phosphorylation of LM2 by cAMP-dependent protein kinase was inhibited approximately 80-90%. Recently, a functional covalent complex of cytochrome b5 and LM2 was prepared and purified to homogeneity (P.P. Tamburini and J.B. Schenkman (1987) Proc. Natl. Acad. Sci. USA 84, 11-15). When present as a covalent complex with cytochrome b5, the phosphorylation of LM2 in the complex by cAMP-dependent protein kinase was also inhibited about 80-90% relative to an equivalent amount of LM2 alone. On the other hand, when the LM2 was phosphorylated prior to interaction with cytochrome b5, the ability of the latter to perturb the spin equilibrium of LM2 and oxidation of p-nitroanisole by the LM2 was diminished to an extent comparable to the degree of phosphorylation. The results suggest either that the phosphorylation site on LM2 may be within the cytochrome b5 binding site or that phosphorylation and cytochrome b5 cause mutually exclusive conformational changes in LM2. In addition, eight different forms of cytochrome P-450 from the rat (RLM2, RLM3, fRLM4, RLM5, RLM5a, RLM5b, RLM6, and PBRLM5) were examined as potential substrates for cAMP-dependent protein kinase under the same conditions. Maximal phosphorylation of about 20 mol% was obtained with LM2, and about half as much with PBRLM5. The low extent of phosphorylation of LM2 was not due to the prior presence of phosphate on the enzyme since LM2, as isolated, contains less than 0.1 mol phosphate/mol of enzyme. The other forms of cytochrome P-450 tested showed little or no phosphorylation in vitro despite the presence of a cAMP-dependent protein kinase phosphorylation sequence on at least two of them.  相似文献   

20.
Cytochrome P-450-dependent prostaglandin omega-hydroxylation is induced over 100-fold during late gestation in rabbit pulmonary microsomes (Powell, W.S. (1978) J. Biol. Chem. 253, 6711-6716). Purification of cytochromes P-450 from lung microsomes of pregnant rabbits yielded three fractions. Two of these fractions correspond to rabbit lung P-450I (LM2) and P-450II (LM5), which together constitute 70-97% of total cytochrome P-450 in lung microsomes from nonpregnant rabbits. The third form, which we designate rabbit cytochrome P-450PG-omega, regioselectively hydroxylates prostaglandins at the omega-position in reconstituted systems with a turnover of 1-5 min-1. Titration with purified pig liver cytochrome b5, demonstrated a 4-fold maximum stimulation at a cytochrome b5 to a P-450 molar ratio of 1-2. Rabbit lung P-450PG-omega formed a typical type I binding spectrum upon the addition of prostaglandin E1 with a calculated K8 of 1 microM, which agreed reasonably well with the kinetically calculated Km of 3 microM. Cytochrome P-450PG-omega was isolated as a low-spin isozyme with a lambda max (450 nm) in the CO-difference spectrum distinguishable from P-450I (451 nm) and P-450II (449 nm). Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis demonstrated that although purified P-450PG-omega had a relatively low specific content (12.1 nmol mg-1), it appeared homogeneous with a calculated minimum Mr of 56,000, intermediate between rabbit LM4 and LM6. When lung microsomes from pregnant and nonpregnant rabbit were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a protein band, with a Mr identical to P-450PG-omega, was observed in the pregnant rabbit, whereas this band appeared to be very faint or absent in microsomes from the nonpregnant rabbit. Purification of cytochromes P-450 from nonpregnant rabbit lung yielded only P-450I and P-450II. P-450PG-omega appears to be a novel rabbit P-450, possessing high activity towards omega-hydroxylation of prostaglandins, and is greatly induced during pregnancy in rabbit lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号