首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of dermorphin, [D-Arg2]dermorphin and [D-Arg2, Gly3, Phe4]dermorphin in a soluble rat brain extract was examined. The former two heptapeptides were degraded in a similar fashion to produce corresponding N-terminal tetrapeptide as the main degradation product along with the parallel release of Tyr5, Pro6 and Ser7-NH2. Tyr-D-Arg-Phe-Gly showed a good enzymatic stability. When captopril, an angiotensin-converting enzyme inhibitor, was present in the incubation mixture, hydrolysis of the Gly4-Tyr5 bond was markedly suppressed and resulted in release of the corresponding N-terminal hexapeptide as the main degradation product. Combined use of captopril and amastatin, an aminopeptidase inhibitor, markedly suppressed the hydrolysis of these peptides. On the other hand, [D-Arg2, Gly3, Phe4]dermorphin was hydrolyzed easier than the other two heptapeptides and considerable amounts of Tyr1 and Phe4 were released after 20 hr incubation while the N-terminal tetrapeptide, Tyr-D-Arg-Gly-Phe, showed a good enzymatic stability. On the basis of these results, possible degradation pathways of these heptapeptides were discussed.  相似文献   

2.
Cross-tolerance between [D-Arg2]-dermorphin tetrapeptide analogs and morphine with respect to antinociception was examined in the present set of experiments. Systemic administration of H-Tyr-D-Arg-Phe-Gly-NH2 (TDAPG-NH2), H-Tyr-D-Arg-Phe-beta-Ala-OH (TDAPA) or morphine over a period of 5 days produced the development of tolerance. In the cross-tolerance study, antinociception after subcutaneous (SC), intracerebroventricular (ICV) and intrathecal (IT) administrations of TDAPG-NH2 and TDAPA in morphine-tolerant mice was not significantly different from their respective effects in saline-pretreated control mice. A marked tolerance to SC- and ICV-administered morphine was seen in mice made tolerant to TDAPG-NH2 and TDAPA. However, IT administration of morphine produced no significant decrement in the antinociceptive activity in mice made tolerant to TDAPG-NH2 and TDAPA. These data indicate that [D-Arg2]-dermorphin tetrapeptide analogs can produce significant antinociception in morphine-tolerant mice.  相似文献   

3.
The selective recognition of the aminoterminal binding pharmacophore Tyr-D-Xaa-Phe of the opioid heptapeptide dermorphin, Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2 (DRM)1, and of dermenkephalin, Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2 (DREK), by the mu-opioid receptor and delta-opioid receptor, respectively, depends upon the constitution / conformation of the C-terminal tripeptide. The hybrid peptide DREK-[1-4]-DRM-[5-7] is very potent at, and exquisitely selective for the mu-opioid receptor, and differs only from dermenkephalin by its C-terminal tripeptide. Comparison of the structural features of DREK-[1-4]-DRM-[5-7] and dermenkephalin by nmr analysis and molecular modeling revealed striking differences, as well in the trans (Tyr5 - Pro6) isomer (population 75%) than in the cis isomer.. Whereas the folded C-terminal tail of dermenkephalin influenced the tertiary structure of the N-terminal tetrapeptide and placed the Tyr1 and Phe3 aromatic rings in definite orientations that are best suited for the delta-receptor, there were only weak contacts, as shown by NOE data, between the aminoterminal and carboxyterminal parts of the hybrid peptide. This promoted increased flexibility of the whole backbone and relaxed orientations for the side-chains of Tyr1 and Phe3 that are compatible with the mu-receptor but unsuitable for the delta-receptor. The steric hindrance introduced by Pro6 in DREK-[1-4]-DRM-[5-7], plus the absence of large hydrophobic side-chains in positions 5 and 6 may prevent close contacts between the N-terminal and C-terminal domains and reorientation of the main pharmacophoric elements Tyr1 and Phe3.  相似文献   

4.
Nociceptin and its receptor (OP(4)) share sequence homologies with the opioid peptide ligand dynorphin A and its receptor OP(2). Cationic residues in the C-terminal sequence of both peptides seem to be required for selective receptor occupation, but the number and the distribution of these basic residues are different and quite critical. Both receptors are presumably activated by the peptides N-terminal sequence (Xaa-Gly Gly-Phe, where Xaa = Phe or Tyr); however, although OP(4) requires Phe(4) as a determinant pharmacophore, OP(2) requires Tyr(1) as do the other opioid receptors. An extensive structure-activity analysis of the N-terminal tetrapeptide has led to conclude that the presence of aromatic residues in position one and four, preferably Phe, as well as the distance between Phe(1) and Phe(4) are extremely critical for occupation and activation of OP(4) in contrast with other opioid receptors (e.g. OP(1), OP(3), OP(2)). Modification of distance between the side chains of Phe(1) and Phe(4) (as obtained with Nphe(1) substitution in both NC and NC(1-13)-NH(2)) and/or conformational orientation of Phe(1) (as in Phe(1)psi(CH(2)-NH)-Gly(2)) has brought to discovery of pure antagonist ([Nphe(1)]-NC(1-13)-NH(2)) and a partial agonist ([Phe(1) psi(CH(2)-NH)-Gly(2)]-NC(1-13)-NH(2)), which have allowed us to characterize and classify the OP(4) receptor in several species. Thus, although antagonist activities at the OP(4) receptor are obtained by chemical modification of Phe(1)-Gly(2) peptide bond or by a shift of Phe(1) side chain of NC peptides, antagonism at the OP(2) receptor requires the diallylation of the N-terminal amino function, for instance, of dynorphin A. These considerations support the interpretation that the two systems nociceptin/OP(4) and dynorphin A/OP(2) are distinct pharmacological entities that differs in both their active sites (Tyr(1) for Dyn A and Phe(4) for NC) and the number and position of cationic residues in the C-terminal portions of the molecules. The chemical features of novel OP(4) receptor ligands either pseudopeptides obtained by combinatorial library screening or molecules of nonpeptide structure are reported and discussed in comparison with NC and NC related peptides.  相似文献   

5.
Dermorphin (Tyr? D-Ala? Phe? Gly? Tyr? Pro? Ser? NH2), a potent natural peptide opioid, its synthetic L-Ala2 analog, and all the N fragments from the tripeptide (Tyr? D -Ala? Phe? NH2) to the parent hexapeptide amide were characterized for the first time by means of proton nmr spectroscopy at 11.74 T. Assignments of most protons of dermorphin were facilitated by the study of the N-terminal fragments. Comparison of spectroscopic parameters with relative pharmacological activity is proposed as a possible means of studying flexible agonists in solution.  相似文献   

6.
To investigate the value of the 2',6'-dimethylphenylalanine (Dmp) residue as an aromatic amino acid substitution, we prepared analogues of the mu opioid receptor-selective dermorphin tetrapeptide Tyr-D-Arg-Phe-betaAla-NH(2) (YRFB) in which Dmp or its D-isomer replaced Tyr(1) or Phe(3). Replacing Phe(3) with Dmp essentially tripled mu receptor affinity and the receptor's in vitro biological activities as determined with the guinea pig ileum (GPI) assay but did not change delta receptor affinity. Despite an inversion of the D configuration at this position, mu receptor affinity and selectivity remained comparable with those of the L-isomer. Replacing the N-terminal Tyr residue with Dmp produced a slightly improved mu receptor affinity and a potent GPI activity, even though the substituted compound lacks the side chain phenolic hydroxyl group at the N-terminal residue. Dual substitution of Dmp for Tyr(1) and Phe(3) produced significantly improved mu receptor affinity and selectivity compared with the singly substituted analogues. Subcutaneous injection of the two analogues, [Dmp(3)]YRFB and [Dmp(1)]YRFB, in mice produced potent analgesic activities that were greater than morphine in the formalin test. These lines of evidence suggest that the Dmp residue would be an effective aromatic amino acid surrogate for both Tyr and Phe in the design and development of novel opioid mimetics.  相似文献   

7.
Multicatalytic, High-Mr Endopeptidase from Postmortem Human Brain   总被引:2,自引:0,他引:2  
The main high molecular weight (650K) multicatalytic endopeptidase has been purified from postmortem human cerebral cortex. As in other tissues and species, this enzyme is composed of several subunits of 24-31K and has three distinct catalytic activities, as shown by the hydrolysis of the fluorogenic tripeptide substrates glutaryl-Gly-Gly-Phe-7-amido-4-methylcoumarin, benzyloxycarboxyl-Gly-Gly-Arg-7-amido-4-methylcoumarin, and benzyloxycarboxyl-Leu-Leu-Glu-2-naphthylamide with hydrophobic (Phe), basic (Arg), and acidic (Glu) residues in the P1 position, respectively. These activities are distinguishable by their differential sensitivity to peptidase inhibitors. The enzyme hydrolysed neuropeptides at pH 7.4 at multiple sites with widely differing rates, ranging from 113 nmol/min/mg for substance-P, down to 2 nmol/min/mg for bradykinin. The enzyme also had proteinase activity as shown by the hydrolysis of casein. For the hydrolysis of the Tyr5-Gly6 bond in luteinizing hormone-releasing hormone, the Km was 0.95 mM and the specificity constant (kcat/Km) was 4.7 X 10(3) M-1 s-1. The bond specificity of the enzyme at neutral pH was determined by identifying the degradation products of 15 naturally occurring peptide sequences. The bonds most susceptible to hydrolysis had a hydrophobic residue at P1 and either a small (e.g., -Gly or -NH2) or hydrophobic residue at P'1. Hydrolysis of -Glu-X bonds (most notably in neuropeptide Y) and the Arg6-Arg7 bond in dynorphin peptides was also seen. Thus the three activities identified with fluorogenic substrates appear to be expressed against oligopeptides.  相似文献   

8.
The synthesis of conformationally restricted dipeptidic moieties 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba)-Gly ([(4S)-amino-3-oxo-1,2,4,5-tetrahydro-1H-2-benzazepin-2-yl]-acetic acid) and 8-hydroxy-4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Hba)-D-Ala ([(4S)-amino-8-hydroxy-3-oxo-1,2,4,5-tetrahydro-benzo[c]azepin-2-yl]-propionic acid) was based on a synthetic strategy that uses an oxazolidinone as an N-acyliminium precursor. Introducing these Aba scaffolds into the N-terminal tetrapeptide of dermorphin (H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2)-induced remarkable shifts in affinity and selectivity towards the opioid mu- and delta-receptors. This paper provides the synthesis and biological in vitro and in vivo evaluation of constricted analogues of the N-terminal tetrapeptide H-Tyr-D-Ala-Phe-Gly-NH2, which is the minimal subunit of dermorphin needed for dermorphin-like opiate activity.  相似文献   

9.
Comprehensive energy calculations were applied to four opioid-related peptides with different receptor selectivities, namely the delta-selective dermenkephalin (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2, DRE), the mu-selective dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2, DRM) and their "hybrid" peptides DRM/DRE (Tyr-D-Ala-Phe-Gly-Leu-Met-Asp-NH2) and DRE/DRM (Tyr-D-Met-Phe-His-Tyr-Pro-Ser-NH2). It was shown that the N-terminal tripeptide "mu-messages" in the delta-selective ligands DRE and DRM/DRE can possess similar low energy space arrangements of their functionally important elements (the N-terminal alpha-amino group and the aromatic moieties of Tyr and Phe), but that these are different from the space arrangement of these moieties in mu-selective DRM and DRE/DRM. These results suggest that the C-terminal tripeptide "delta-address" in DRE may influence the conformation of the "mu-message" in DRM. A refined model for the delta-receptor-bound conformation of DRE is proposed based on these calculations which is similar to that previously suggested for the cyclic delta-selective peptide [D-Pen2, D-Pen5]enkephalin (DPDPE). This model also has partial correspondence with the structure of the delta-selective alkaloid naltrindole.  相似文献   

10.
The Phe3 and/or Tyr5 residues in dermorphin (H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) and its N-terminal hexapeptide-amide were replaced by delta-Phe or by Phe5 in order to examine the effect on opioid activity. On GPI preparation, the substitution of Phe5 for Tyr5 was well tolerated, whereas the hexa and heptapeptides containing delta Phe in position 3 and/or 5 displayed low potency. The unsaturation at position 3 alone or at positions 3 and 5 was particularly detrimental to mu activity. In the tail flick test, the influence of unsaturation or substitution at positions 3 and 5 generally matched the results of the in vitro assay. Dehydropeptides showed comparatively low antinociceptive effects and [Phe5] analogues displayed about 50% of the analgesic potency of the original peptides.  相似文献   

11.
Dermorphin, a heptapeptide isolated from the skin of the frogs Phillomedusa sauvagei and Phillomedusa rhodei, is endowed with potent peripheral and central opioid-like activity. Intracerebroventricular (icv) injection of dermorphin (31.2, 62.5 and 125 pmol/100g) induced in ovariectomized (OVX) rats dose related rises and decreases in prolactin (PRL) and luteinizing hormone (LH) levels, respectively. The aim of this work was to evaluate the same endocrine responses after administration of shorter peptide amide homologues, related to the N-terminal sequence of dermorphin. These compounds retain a substantial analgesic activity although the latter decreases with the decrease in the number of amino acid residues. Icv administration of the hexapeptide homologue (dermorphin 1-6 amide) to OVX rats did not induce any PRL rise or LH inhibition, even at the high dose of 250 pmol/100g. The pentapeptide (dermorphin 1-5 amide), instead, increased PRL and decreased LH secretion, although the effect was significant only at the dose of 250 pmol/100g. Administration of the tetrapeptide (dermorphin 1-4 amide) induced a significant PRL rise and LH inhibition at both the doses of 125 and 250 pmol/100g. The tetrapeptide was the smallest fragment of the dermorphin moiety which caused endocrine responses while the tripeptide (dermorphin 1-3 amide) was completely ineffective in this context. These data indicate that a complete dissociation exists between the behavioral and endocrine effects of the dermorphin homologues examined. In fact, shorter dermorphins whose analgesic potency was directly related to the number of amino acids, exhibited an opposite pattern in evoking endocrine effects.  相似文献   

12.
We studied the effect of partial retro-inverso modification of selected peptide bonds of dermorphin (H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2. The modifications concern two consecutive peptide bonds (Phe3-Cly4-Tyr5, I) or a single one (Gly4-Tyr5-, II or Phe3-Gly4, III). All pseudoheptapeptides showed low opioid activity in the in vitro and in vivo tests. Compound III has a biological potency comparable to that of morphine but only 2-5% of original dermorphin when tested in guinea pig ileum preparation and in mice tail-flick assay after intracerebro or subcutaneous administration.  相似文献   

13.
Theoretical conformational analysis was carried out for several tetrapeptide analogues of beta-casomorphin and dermorphin containing a Phe residue in position 3. Sets of low-energy backbone structures of the mu-selective peptides [N-Me-Phe3, D-Pro4]-morphiceptin and Tyr-D-Orn-Phe-Asp-NH2 were obtained. These sets of structures were compared for geometrical similarity between themselves and with the low-energy conformations found for the delta-selective peptide Tyr-D-Cys-Phe-D-Pen-OH and nonactive peptide Tyr-Orn-Phe-Asp-NH2. Two pairs of geometrically similar conformations of mu-selective peptides, sharing no similarity with the conformations of peptides showing low affinity to the mu-receptor, were selected as two alternative models of probable mu-receptor-bound backbone conformations. Both models share geometrical similarity with the low-energy structures of the linear mu-selective peptide Tyr-D-Ala-Phe-Phe-NH2. Putative binding conformations of Tyr1 and Phe3 side chains are also discussed.  相似文献   

14.
An aminopeptidase (EC 3.4.11.1) was purified from the extract of Lyophyllum cinerascens by ammonium sulfate fractionation and sequential chromatographies on DEAE-Sephadex, Sephadex G-150, HPLC-phenyl-5PW, and HPLC-DEAE-5PW columns, with an activity recovery of 4.6% using Leu-beta-naphthylamide as a substrate. The enzyme was a tetrameric protein of molecular weight 150,000 and was found to be rich in histidine. It exhibited a pH optimum of 7.2 and stability between pH 5.7 and 7.7. The isoelectric point of the enzyme was 4.6. The enzyme catalyzed the hydrolysis of amino acid beta-naphthylamides, Phe greater than Leu greater than Met greater than Tyr greater than Ala greater than Glu, and the differences of the measured kcat's ranged over 2-3 orders of magnitude while many of the amino acid beta-naphthylamides were not hydrolyzed at all. Other interesting comparisons include two aliphatics, Ala vs Leu, and the aromatics, Tyr vs Phe, which show a 30-fold difference in the kcat/Km values. The enzyme also hydrolyzed Leu-Gly-Gly and the B chain of oxidized insulin to release N-terminal leucine and phenylalanine, respectively. The release of N-terminal Phe from the oxidized B chain is interesting in view of the fact that the penultimate residue is Val, an unfavorable amino acid in the beta-naphthylamide series. The enzyme seems to be a true aminopeptidase, requiring the free amino groups and hydrolyzing dipeptide and oligopeptide from the N-terminal end. The enzyme was resistant to the action of amastatin. Neither sulfhydryl reagents nor serine protease inhibitors affected the enzyme activity; however, the enzyme was inhibited weakly by EDTA and bestatin and strongly by diethyl pyrocarbonate.  相似文献   

15.
M Altstein  Y Dudai  Z Vogel 《FEBS letters》1984,166(1):183-188
Two proteolytic activities that degrade [Leu5]enkephalin were found in Torpedo californica electric organ. One is a soluble aminopeptidase that degrades enkephalin at the Tyr1-Gly2 peptide bond, and the second is an endopeptidase that degrades enkephalin at the Gly3-Phe4 peptide bond. The aminopeptidase is inhibited by low concentrations of puromycin and bestatin. More than 60% of the endopeptidase is associated with the particulate fraction and is almost completely inhibited by low concentrations of captopril (SQ 14225) or SQ 20881 (potent inhibitors of angiotensin converting enzyme). Thiorphan and phosphoramidon (potent enkephalinase inhibitors) are much less effective. The pattern of cleavage and inhibition of the particulate endopeptidase thus resembles that of angiotensin converting enzyme.  相似文献   

16.
Two kinds of dehydropeptide analogs of enkephalin containing a delta Tyr unit at the N-terminus have been synthesized by coupling Boc-delta Tyr-(Cl2 Bzl)-OH with amino acid amides and tetrapeptide esters using the water soluble carbodiimide-HOBt method. Pentapeptides consisting of delta Tyr1, and delta Phe4 or delta Leu5 were also prepared. Ultraviolet difference spectroscopy was important in the characterization of the dehydro moieties, delta Tyr, delta Phe and delta Leu. Attempts to liberate delta Tyr1-enkephalins have been unsuccessful because of the instability of an N-terminal delta Tyr residue having p-phenolic group in the side chain.  相似文献   

17.
Wounding of tomato leaves results in the accumulation of an exoprotease called leucine aminopeptidase (LAP-A) that preferentially hydrolyzes amino acid-p-nitroanilide and -beta-naphthylamide substrates with N-terminal Leu, Met and Arg residues. To determine the substrate specificity of LAP-A on more natural substrates, the rates of hydrolysis of 60 dipeptide and seven tripeptide substrates were determined. For comparison, the specificities of the porcine and Escherichia coli LAPs were evaluated in parallel. Several marked differences in substrate specificities for the animal, plant and prokaryotic LAP enzymes were observed. Substrates with variable N-terminal (P1) residues (Xaa) were evaluated; these substrates had Leu or Gly in the penultimate (P1') position. The plant, animal, and prokaryotic LAPs hydrolyzed dipeptides with N-terminal nonpolar aliphatic (Leu, Val, Ile, and Ala), basic (Arg), and sulfur-containing (Met) residues rapidly, while P1 Asp or Gly were cleaved inefficiently from peptides. Significant differences in the cleavage of dipeptides with P1 aromatic residues (Phe, Tyr, and Trp) were noted. To systematically evaluate the impact of the P1' residue on cleavage of dipeptides, three series of dipeptides (Leu-Xaa, Gly-Xaa, and Arg-Xaa) were evaluated. The P1' residue strongly influenced hydrolysis of dipeptides and the magnitude of its effect was dependent on the P1 residue. P1' Pro, Asp, Lys and Gly slowed the hydrolysis rates of the tomato LAP-A, porcine LAP, and E. coli PepA markedly. Analysis six Arg-Gly-Xaa tripeptides showed that more diversity was tolerated in the P2' position. P2' Arg inhibited tripeptide cleavage by all three enzymes, while P2' Asp enhanced hydrolysis rates for the porcine and prokaryotic LAPs.  相似文献   

18.
Harmful cyanobacterial blooms in waters have become a global environmental problem, this mainly due to the production and release of various microalgal toxins, in which microcystins (MCs) are distributed widely. Here, we focused on the study of a typical form of microcystins called microcystin-YR (MC-YR). It was found that initial 14.8 mg/L of MC-YR could be completely eliminated within 10 hr by the crude enzymes (CEs) of Sphingopyxis sp. USTB-05, a promising bacterial strain we isolated and identified in our previous study. During the enzymatic biodegradation of MC-YR with time course, the peaks of two intermediate and two final products were observed on the profiles of HPLC at the wavelengths of 238 nm and 230 nm, respectively. Based on the analysis of m/z ratios of MC-YR and its four products by LC-MS/MS, we suggested that at least four enzymes were involved in the biodegradation of MC-YR by Sphingopyxis sp. USTB-05. The first enzyme microcystinase converted cyclic MC-YR to linear MC-YR as the first product. Then the second enzyme serine protease was found to cleave the target peptide bond between alanine (Ala) and tyrosine (Tyr) of linearized MC-YR, producing a tetrapeptide and a tripeptide as second products, which were Adda-Glu-Mdha-Ala and Tyr-Masp-Arg, respectively. Next, the third enzyme peptidase converted the tetrapeptide of Adda-Glu-Mdha-Ala to Adda. And the fourth enzyme cleaved the tripeptide of Tyr-Masp-Arg to produce Tyr and dipeptide (Masp-Arg), which has never been reported. These findings will help us better understand the biodegradation pathway of MC-YR by Sphingopyxis sp. USTB-05.  相似文献   

19.
A proteinase was purified from resting seeds of Cucurbita ficifolia by ammonium sulfate fractionation and successive chromatography on CM-cellulose, Sephacryl S-300 and TSK DEAE-2SW (HPLC) columns. Inhibition by DFP and PMSF suggests that the enzyme is a serine proteinase. The apparent molecular mass of this enzyme is ca. 77 kDa. The optimum activity for hydrolysis of casein and Suc-Ala-Ala-Pro-Phe-pNA is around pH 10.5. The following peptide bonds in the oxidized insulin B-chain were hydrolysed by the proteinase: Phe1-Val2, Asn3-Gln4, Gln4-His5, Cya7-Gly8, Glu13-Ala14, Ala14-Leu15, Cya19-Gly20, Pro28-Lys29 and Lys29-Ala30. The proteinase is more selective towards the native squash seed trypsin inhibitor (CMTI I) and primarily cuts off only its N-terminal arginine. The inhibitor devoided of the N-terminal arginine residue is still active against trypsin.  相似文献   

20.
Brguljan PM  Turk V  Nina C  Brzin J  Krizaj I  Popovic T 《Peptides》2003,24(12):1977-1984
Highly purified human brain cathepsin H (EC 3.4.22.16) was used to study its involvement in degradation of different brain peptides. Its action was determined to be selective. On Leu-enkephalin, dynorphin (1-6), dynorphin (1-13), alpha-neoendorphin, and Lys-bradykinin, it showed a preferential aminopeptidase activity by cleaving off hydrophobic or basic amino acids. It showed no aminopeptidase activity on bradykinin, which has Pro adjacent to its N-terminal amino acid, on neurotensin with blocked N-terminal amino acid, or on dermorphin with second amino acid D-alanine. After prolonged incubation, cathepsin H acted as an endopeptidase. Dermorphin and dynorphin (1-13) were cleaved at bonds with Phe in the P2 position, while dynorphin (1-6), alpha-neoendorphin, bradykinin and Lys-bradykinin were cleaved at bonds with Gly in the P2 position. Further on, it was shown that human brain cathepsin H activity could be controlled in vivo by cystatin C in its full-length form or its [delta1-10] variant, already known to be co-localized in astrocytes, since the Ki values for the inhibition are in the 10(-10) M range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号